Mode transitions and wave propagation in a driven-dissipative Toda-Rayleigh ring -: art. no. 056208

被引:19
作者
del Río, E
Makarov, VA
Velarde, MG
Ebeling, W
机构
[1] Univ Politecn Madrid, ETSI, E-28040 Madrid, Spain
[2] Univ Complutense, Inst Pluridisciplinar, E-28040 Madrid, Spain
[3] CISM, I-33100 Udine, Italy
[4] Humboldt Univ, Inst Phys, D-10115 Berlin, Germany
来源
PHYSICAL REVIEW E | 2003年 / 67卷 / 05期
关键词
D O I
10.1103/PhysRevE.67.056208
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
A circular lattice (ring) of N electronic elements with Toda-type exponential interactions and Rayleigh-type dissipation is used to illustrate wave formation, propagation, and switching between wave modes. A methodology is provided to help controlling modes, thus allowing it to realize any of (N-1) different wave modes (including soliton-type modes) and the switching between them by means of a single control parameter.
引用
收藏
页数:9
相关论文
共 32 条
[1]  
[Anonymous], 1989, NOISE NONLINEAR DYNA
[2]   Reaction-diffusion CNN algorithms to generate and control artificial locomotion [J].
Arena, P ;
Fortuna, L ;
Branciforte, M .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-FUNDAMENTAL THEORY AND APPLICATIONS, 1999, 46 (02) :253-260
[3]  
Ayers J, 2000, P INT S AQ BIOM TOK
[4]   One-dimensional dynamics for traveling fronts in coupled map lattices [J].
Carretero-González, R ;
Arrowsmith, DK ;
Vivaldi, F .
PHYSICAL REVIEW E, 2000, 61 (02) :1329-1336
[5]   COUPLED NONLINEAR OSCILLATORS AND THE SYMMETRIES OF ANIMAL GAITS [J].
COLLINS, JJ ;
STEWART, IN .
JOURNAL OF NONLINEAR SCIENCE, 1993, 3 (03) :349-392
[6]   HEXAPODAL GAITS AND COUPLED NONLINEAR OSCILLATOR MODELS [J].
COLLINS, JJ ;
STEWART, I .
BIOLOGICAL CYBERNETICS, 1993, 68 (04) :287-298
[7]   WHAT MECHANISMS COORDINATE LEG MOVEMENT IN WALKING ARTHROPODS [J].
CRUSE, H .
TRENDS IN NEUROSCIENCES, 1990, 13 (01) :15-21
[8]   Walknet - a biologically inspired network to control six-legged walking [J].
Cruse, H ;
Kindermann, T ;
Schumm, M ;
Dean, J ;
Schmitz, J .
NEURAL NETWORKS, 1998, 11 (7-8) :1435-1447
[9]  
Del Río E, 1998, INT J BIFURCAT CHAOS, V8, P2255
[10]   HOPF-BIFURCATION IN THE PRESENCE OF SYMMETRY [J].
GOLUBITSKY, M ;
STEWART, I .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1985, 87 (02) :107-165