Suppression of miR-10a-5p in bone marrow mesenchymal stem cells enhances the therapeutic effect on spinal cord injury via BDNF

被引:13
|
作者
Zhang, Tongxia [1 ]
Liu, Chong [2 ,3 ]
Chi, Lingyi [2 ,3 ]
机构
[1] Shandong Univ, Qilu Hosp, Dept Neurol, Res Inst Neuromuscular & Neurodegenerat Dis, Jinan 250012, Shandong, Peoples R China
[2] Shandong Univ, Qilu Hosp, Dept Neurosurg, Jinan 250012, Shandong, Peoples R China
[3] Shandong Univ, Inst Brain & Brain Inspired Sci, Jinan 250012, Shandong, Peoples R China
关键词
BDNF; miR-10a-5p; Bone marrow mesenchymal stem cells; Spinal cord injury; STROMAL CELLS; RECOVERY;
D O I
10.1016/j.neulet.2019.134562
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Backgrounds/Aims: Brain-derived neurotrophic factor (BDNF) plays a primary role in the maturation, proliferation, and differentiation of neuronal cells, can induce bone-marrow-derived mesenchymal stem cells (MSCs) to differentiate into nerve cells. This study aims to explore whether regulation of BDNF through microRNAs (miRNAs) in MSCs may further enhance the therapeutic effect on spinal cord injury (SCI). Methods: Bioinformatics analyses were done to predict miRNAs that target BDNF in MSCs. Dual-luciferase reporter gene assays were performed to verify the target relationship between microRNA and BDNF. We examined the mRNA and protein levels of BDNF in MSCs by RT-qPCR and Western blot, respectively. CCK 8 assay was chosen to assess cell viability. MSCs were transduced with miR-10a-5p-ASO, which were transplanted into rats that underwent SCI. The tissue integrity percentage, cavity volume, and Basso-Beattie-Bresnahan (BBB) scale were assessed. Neurofilament (NF) was detected using immunohistochemistry. Histological features of spinal cord tissues examined following HE staining. Results: MiR-10a-5p inhibited protein translation of BDNF, through binding to the 3'-UTR of the BDNF. MSCs transduced with MiR-10a-5p-ASO further increased the tissue integrity percentage, decreased cavity volume, and enhanced the recovery of BBB score in SCI model rats, compared to control MSCs. Conclusion: Upregulation of BDNF by miR-10a-5p suppression in MSCs further improve the therapeutic potential of MSCs in treating SCI in rats.
引用
收藏
页数:7
相关论文
共 50 条
  • [11] Effect of intravenous transplantation of bone marrow mesenchymal stem cells on neurotransmitters and synapsins in rats with spinal cord injury
    Chen, Shaoqiang
    Wu, Bilian
    Lin, Jianhua
    NEURAL REGENERATION RESEARCH, 2012, 7 (19) : 1445 - 1453
  • [13] Effect of Neuroglobin Genetically Modified Bone Marrow Mesenchymal Stem Cells Transplantation on Spinal Cord Injury in Rabbits
    Lin, Wen-Ping
    Chen, Xuan-Wei
    Zhang, Li-Qun
    Wu, Chao-Yang
    Huang, Zi-Da
    Lin, Jian-Hua
    PLOS ONE, 2013, 8 (05):
  • [14] Therapeutic effect of mesenchymal stem cell in spinal cord injury
    Yang, Yalin
    Zhang, Liang
    Sun, Weizong
    Li, Wenhui
    Wang, Kai
    INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL MEDICINE, 2020, 13 (03): : 1979 - 1986
  • [15] MiR-124 promotes bone marrow mesenchymal stem cells differentiation into neurogenic cells for accelerating recovery in the spinal cord injury
    Zhao, Yong
    Jiang, Hui
    Liu, Xin-Wei
    Xiang, Liang-Bi
    Zhou, Da-Peng
    Chen, Jian-Ting
    TISSUE & CELL, 2015, 47 (02): : 140 - 146
  • [16] Erythropoietin facilitates the recruitment of bone marrow mesenchymal stem cells to sites of spinal cord injury
    Li, Jun
    Guo, Weichun
    Xiong, Min
    Zilang, Shuangjie
    Han, Heng
    Chen, Jie
    Mao, Dan
    Yu, Hualong
    Zeng, Yun
    EXPERIMENTAL AND THERAPEUTIC MEDICINE, 2017, 13 (05) : 1806 - 1812
  • [17] Chondroitinase ABC plus bone marrow mesenchymal stem cells for repair of spinal cord injury
    Chun Zhang
    Xijing He
    Haopeng Li
    Guoyu Wang
    NeuralRegenerationResearch, 2013, 8 (11) : 965 - 974
  • [18] Chondroitinase ABC plus bone marrow mesenchymal stem cells for repair of spinal cord injury
    Zhang, Chun
    He, Xijing
    Li, Haopeng
    Wang, Guoyu
    NEURAL REGENERATION RESEARCH, 2013, 8 (11) : 965 - 974
  • [19] Potential of Combination of Bone Marrow Nucleated and Mesenchymal Stem Cells in Complete Spinal Cord Injury
    Katoh, Shojiro
    Dedeepiya, Vidyasagar D.
    Kuroda, Satoshi
    Iwasaki, Masaru
    Senthilku-mar, Rajappa
    Preethy, Senthilkumar
    Abraham, Samuel J. K.
    CURRENT STEM CELL RESEARCH & THERAPY, 2021, 16 (04) : 385 - 399
  • [20] Attenuating Spinal Cord Injury by Conditioned Medium from Bone Marrow Mesenchymal Stem Cells
    Tsai, May-Jywan
    Liou, Dann-Ying
    Lin, Yan-Ru
    Weng, Ching-Feng
    Huang, Ming-Chao
    Huang, Wen-Cheng
    Tseng, Fan-Wei
    Cheng, Henrich
    JOURNAL OF CLINICAL MEDICINE, 2019, 8 (01)