Rational curves on hypersurfaces of low degree, II

被引:11
作者
Harris, J [1 ]
Starr, J
机构
[1] Harvard Univ, Dept Math, Cambridge, MA 02138 USA
[2] MIT, Dept Math, Cambridge, MA 02139 USA
关键词
Kontsevich moduli space; stable map; rationally connected variety;
D O I
10.1112/S0010437X04001253
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This is the second in a sequence of papers on the geometry of spaces of rational curves of degree e on a general hypersurface X subset of P-n of degree d. In Part I (J. reine angew. Math. 571 (2004), 73-106) it is proved that, if d < (n + 1)/2, then for each e the space of rational curves is irreducible, reduced and has the expected dimension. In this paper it is proved that, if d(2) + d + 1 less than or equal to n, then for each e the space of rational curves is a rationally connected variety; in particular it has negative Kodaira dimension.
引用
收藏
页码:35 / 92
页数:58
相关论文
共 19 条
[1]   Compactifying the space of stable maps [J].
Abramovich, D ;
Vistoli, A .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2002, 15 (01) :27-75
[2]  
ALEXEEV V, 1996, MODULI SPACES MGN SU
[3]  
[Anonymous], 1983, PROGR MATH
[4]   The intrinsic normal cone [J].
Behrend, K ;
Fantechi, B .
INVENTIONES MATHEMATICAE, 1997, 128 (01) :45-88
[5]   Gromov-Witten invariants in algebraic geometry [J].
Behrend, K .
INVENTIONES MATHEMATICAE, 1997, 127 (03) :601-617
[6]   Stacks of stable maps and Gromov-Witten invariants [J].
Behrend, K ;
Manin, Y .
DUKE MATHEMATICAL JOURNAL, 1996, 85 (01) :1-60
[7]  
BOSCH S, 1990, ERGEBNISSE MATH IHRE, V2
[8]  
DEBARRE O, 2001, UNIVERSITEX, pR5
[9]  
FULTON W, 1995, NOTES STABLE MAPS QU, P45
[10]  
Fulton W, 1998, ERGEBNISSE MATH IHRE