Low temperature reduction of graphene oxide film by ammonia solution and its application for high-performance supercapacitors

被引:20
作者
Zhu, Yingfang [1 ]
Huang, Haifu [1 ,4 ]
Zhou, Wenzheng [1 ,4 ]
Li, Guangxu [1 ,4 ]
Liang, Xianqing [1 ,4 ]
Guo, Jin [1 ,4 ]
Tang, Shaolong [2 ,3 ]
机构
[1] Guangxi Univ, Guangxi Key Lab Relativist Astrophys, Guangxi Coll & Univ Key Lab Novel Energy Mat & Re, Coll Phys Sci & Technol, Nanning 530004, Peoples R China
[2] Nanjing Univ, Dept Phys, Nanjing Natl Lab Microstruct, Nanjing 210093, Jiangsu, Peoples R China
[3] Nanjing Univ, Dept Phys, Jiangsu Key Lab Nanotechnol, Nanjing 210093, Jiangsu, Peoples R China
[4] Guilin Univ Elect Technol, Sch Mat Sci & Engn, Guangxi Collaborat Innovat Ctr Struct & Property, Guilin 541004, Peoples R China
基金
中国国家自然科学基金;
关键词
ELECTROCHEMICAL ENERGY-STORAGE; CHEMICAL-VAPOR-DEPOSITION; CAPACITORS; ULTRACAPACITORS; CARBON;
D O I
10.1007/s10854-017-6771-3
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Here we demonstrate that graphene oxide (GO) film on Ni foam can be doped with nitrogen atoms and reduced directly at a lower temperature of 90 A degrees C using ammonia solution as reducing agent and nitrogen source. The reduction and nitrogen doping of GO occur simultaneously when GO film on Ni foam is immersed into ammonia solution. The nitrogen doping can be realised and the content of N in graphene film turns out to be rather good as high as 3.60%. When used as binder-free electrode, the resulting graphene film on Ni foam delivers a gravimetric capacitance of 230 F g(-1). It also exhibites relatively an outstanding rate capability of 164 F g(-1) at 83.3 A g(-1) and better cycle stability that capacitance retention maintains at 96.7% of its initial capacitance capacitance after 2000 cycles. The method also provides a universal route for preparing a binder-free graphene-based electrode.
引用
收藏
页码:10098 / 10105
页数:8
相关论文
共 36 条
[1]   Pseudocapacitive oxide materials for high-rate electrochemical energy storage [J].
Augustyn, Veronica ;
Simon, Patrice ;
Dunn, Bruce .
ENERGY & ENVIRONMENTAL SCIENCE, 2014, 7 (05) :1597-1614
[2]  
Augustyn V, 2013, NAT MATER, V12, P518, DOI [10.1038/NMAT3601, 10.1038/nmat3601]
[3]   Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage [J].
Bonaccorso, Francesco ;
Colombo, Luigi ;
Yu, Guihua ;
Stoller, Meryl ;
Tozzini, Valentina ;
Ferrari, Andrea C. ;
Ruoff, Rodney S. ;
Pellegrini, Vittorio .
SCIENCE, 2015, 347 (6217)
[4]   Ultracapacitors: why, how, and where is the technology [J].
Burke, A .
JOURNAL OF POWER SOURCES, 2000, 91 (01) :37-50
[5]  
Cao X., 2014, ENERG ENVIRON SCI, V7, P18
[6]   Hierarchically aminated graphene honeycombs for electrochemical capacitive energy storage [J].
Chen, Cheng-Meng ;
Zhang, Qiang ;
Zhao, Xiao-Chen ;
Zhang, Bingsen ;
Kong, Qing-Qiang ;
Yang, Mang-Guo ;
Yang, Quan-Hong ;
Wang, Mao-Zhang ;
Yang, Yong-Gang ;
Schloegl, Robert ;
Su, Dang Sheng .
JOURNAL OF MATERIALS CHEMISTRY, 2012, 22 (28) :14076-14084
[7]   Graphene Hydrogels Deposited in Nickel Foams for High-Rate Electrochemical Capacitors [J].
Chen, Ji ;
Sheng, Kaixuan ;
Luo, Peihui ;
Li, Chun ;
Shi, Gaoquan .
ADVANCED MATERIALS, 2012, 24 (33) :4569-4573
[8]   Graphene Oxide-MnO2 Nanocomposites for Supercapacitors [J].
Chen, Sheng ;
Zhu, Junwu ;
Wu, Xiaodong ;
Han, Qiaofeng ;
Wang, Xin .
ACS NANO, 2010, 4 (05) :2822-2830
[9]  
Chen ZP, 2011, NAT MATER, V10, P424, DOI [10.1038/NMAT3001, 10.1038/nmat3001]
[10]   3D Macroporous Graphene Frameworks for Supercapacitors with High Energy and Power Densities [J].
Choi, Bong Gill ;
Yang, MinHo ;
Hong, Won Hi ;
Choi, Jang Wook ;
Huh, Yun Suk .
ACS NANO, 2012, 6 (05) :4020-4028