Semi-explicit symplectic partitioned Runge-Kutta Fourier pseudo-spectral scheme for Klein-Gordon-Schrodinger equations

被引:56
作者
Kong, Linghua [1 ]
Zhang, Jingjing [2 ]
Cao, Ying [1 ]
Duan, Yali [3 ]
Huang, Hong [1 ]
机构
[1] Jiangxi Normal Univ, Sch Math & Informat Sci, Nanchang 330022, Jiangxi, Peoples R China
[2] Chinese Acad Sci, AMSS, Inst Computat Math & Sci Engn Comp, State Key Lab Sci & Engn Comp, Beijing 100190, Peoples R China
[3] Univ Sci & Technol China, Dept Math, Hefei 230026, Anhui, Peoples R China
关键词
Klein-Gordon-Schrodinger equation; Fourier pseudo-spectral; Symplectic partitioned Runge-Kutta; Stormer/Verlet integrator; INTEGRATION;
D O I
10.1016/j.cpc.2010.04.003
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In the manuscript, we propose an explicit symplectic partitioned Runge-Kutta Fourier pseudo-spectral (SPRK-FPS) scheme for the coupled Klein-Gordon-Schrodinger (KGS) equation. It is explicit in term of iteration since it is only required to solve two linear algebraic equations at each marching time step. Furthermore, it does not only symplectic geometric structure-preserving, but also charge-preserving and energy-preserving. The numerical results are in good agreement with the theoretical analysis. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:1369 / 1377
页数:9
相关论文
共 26 条
[1]   Efficient and accurate numerical methods for the Klein-Gordon-Schrodinger equations [J].
Bao, Weizhu ;
Yang, Li .
JOURNAL OF COMPUTATIONAL PHYSICS, 2007, 225 (02) :1863-1893
[2]   SYMPLECTIC INTEGRATION OF HAMILTONIAN-SYSTEMS [J].
CHANNELL, PJ ;
SCOVEL, C .
NONLINEARITY, 1990, 3 (02) :231-259
[3]   Symplectic finite difference approximations of the nonlinear Klein-Gordon equation [J].
Duncan, DB .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1997, 34 (05) :1742-1760
[4]  
Feng K., 1984, P BEIJ S DIFF GEOM D, P42
[5]   COUPLED KLEIN-GORDON-SCHRODINGER EQUATIONS .2. [J].
FUKUDA, I ;
TSUTSUMI, M .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1978, 66 (02) :358-378
[6]   YUKAWA-COUPLED KLEIN-GORDON-SCHRODINGER EQUATIONS IN 3 SPACE DIMENSIONS [J].
FUKUDA, I ;
TSUTSUMI, M .
PROCEEDINGS OF THE JAPAN ACADEMY, 1975, 51 (06) :402-405
[7]  
Guo B., 1995, SCI CHINA SER A, V25, P705
[8]  
HAIRER E., 2006, Springer Series in Computational Mathematics, DOI 10.1007/978-3-662-05018-7
[9]   ON THE GLOBAL STRONG SOLUTIONS OF COUPLED KLEIN-GORDON-SCHRODINGER EQUATIONS [J].
HAYASHI, N ;
VONWAHL, W .
JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 1987, 39 (03) :489-497
[10]   Numerical comparison of five difference schemes for coupled Klein-Gordon-Schrodinger equations in quantum physics [J].
Hong, Jialin ;
Jiang, Shanshan ;
Kong, Linghua ;
Li, Chun .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2007, 40 (30) :9125-9135