Microchannels in Development, Survival, and Vascularisation of Tissue Analogues for Regenerative Medicine

被引:66
作者
Lim, Khoon S. [1 ,3 ,4 ]
Baptista, Marissa [2 ]
Moon, Shahana [2 ]
Woodfield, Tim B. F. [1 ,3 ,4 ]
Rnjak-Kovacina, Jelena [2 ]
机构
[1] Univ Otago Christchurch, Dept Orthopaed Surg, Christchurch 8011, New Zealand
[2] Univ New South Wales, Grad Sch Biomed Engn, Sydney, NSW 2052, Australia
[3] Med Technol Ctr Res Excellence, Auckland, New Zealand
[4] Maurice Wilkins Ctr Mol Biodiscovery, Auckland, New Zealand
基金
澳大利亚研究理事会;
关键词
CARDIAC TISSUE; OXYGEN DISTRIBUTION; SCAFFOLDS; NETWORKS; HYDROGEL; VASCULATURE; GEOMETRY; PLATFORM; MODELS; GROWTH;
D O I
10.1016/j.tibtech.2019.04.004
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Microchannels are simple, perfusable architectural features engineered into biomaterials to promote mass transport of solutes to cells, effective cell seeding and compartmentalisation for tissue engineering applications, control over spatiotemporal distribution of molecules and ligands, and survival, integration, and vascularisation of engineered tissue analogues in vivo. Advances it biofabrication have led to better control over microchannel fabrication in 3D scaffolds, enabling sophisticated designs that drive the development of complex tissue structures. This review addresses the importance of microchannel structures in biomaterial design and regenerative medicine, and discusses their function, fabrication methods, and proposed mechanisms underlying effects.
引用
收藏
页码:1189 / 1201
页数:13
相关论文
共 65 条
[1]   Engineering perfused microvascular networks into microphysiological systems platforms [J].
Andrejecsk, Jillian W. ;
Hughes, Christopher C. W. .
CURRENT OPINION IN BIOMEDICAL ENGINEERING, 2018, 5 :74-81
[2]   The Pivotal Role of Vascularization in Tissue Engineering [J].
Auger, Francois A. ;
Gibot, Laure ;
Lacroix, Dan .
ANNUAL REVIEW OF BIOMEDICAL ENGINEERING, VOL 15, 2013, 15 :177-200
[3]   Geometric control of vascular networks to enhance engineered tissue integration and function [J].
Baranski, Jan D. ;
Chaturvedi, Ritika R. ;
Stevens, Kelly R. ;
Eyckmans, Jeroen ;
Carvalho, Brian ;
Solorzano, Ricardo D. ;
Yang, Michael T. ;
Miller, Jordan S. ;
Bhatia, Sangeeta N. ;
Chen, Christopher S. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2013, 110 (19) :7586-7591
[4]   Hydrogel bioprinted microchannel networks for vascularization of tissue engineering constructs [J].
Bertassoni, Luiz E. ;
Cecconi, Martina ;
Manoharan, Vijayan ;
Nikkhah, Mehdi ;
Hjortnaes, Jesper ;
Cristino, Ana Luiza ;
Barabaschi, Giada ;
Demarchi, Danilo ;
Dokmeci, Mehmet R. ;
Yang, Yunzhi ;
Khademhosseini, Ali .
LAB ON A CHIP, 2014, 14 (13) :2202-2211
[5]   Direct-write bioprinting of cell-laden methacrylated gelatin hydrogels [J].
Bertassoni, Luiz E. ;
Cardoso, Juliana C. ;
Manoharan, Vijayan ;
Cristino, Ana L. ;
Bhise, Nupura S. ;
Araujo, Wesleyan A. ;
Zorlutuna, Pinar ;
Vrana, Nihal E. ;
Ghaemmaghami, Amir M. ;
Dokmeci, Mehmet R. ;
Khademhosseini, Ali .
BIOFABRICATION, 2014, 6 (02)
[6]   Different sensitivity of human endothelial cells, smooth muscle cells and fibroblasts to topography in the nano-micro range [J].
Biela, Sarah A. ;
Su, Yi ;
Spatz, Joachim P. ;
Kemkemer, Ralf .
ACTA BIOMATERIALIA, 2009, 5 (07) :2460-2466
[7]   Tissue engineering of skin and regenerative medicine for wound care [J].
Boyce, Steven T. ;
Lalley, Andrea L. .
BURNS & TRAUMA, 2018, 6
[8]   In Situ Patterning of Microfluidic Networks in 3D Cell-Laden Hydrogels [J].
Brandenberg, Nathalie ;
Lutolf, Matthias P. .
ADVANCED MATERIALS, 2016, 28 (34) :7450-7456
[9]   Microfluidic scaffolds for tissue engineering [J].
Choi, Nak Won ;
Cabodi, Mario ;
Held, Brittany ;
Gleghorn, Jason P. ;
Bonassar, Lawrence J. ;
Stroock, Abraham D. .
NATURE MATERIALS, 2007, 6 (11) :908-915
[10]   3D Cell Printed Tissue Analogues: A New Platform for Theranostics [J].
Choi, Yeong-Jin ;
Yi, Hee-Gyeong ;
Kim, Seok-Won ;
Cho, Dong-Woo .
THERANOSTICS, 2017, 7 (12) :3118-3137