In situ identification of environmental microorganisms with Raman spectroscopy

被引:35
|
作者
Cui, Dongyu [1 ,2 ]
Kong, Lingchao [3 ]
Wang, Yi [1 ,2 ]
Zhu, Yuanqing [2 ,5 ]
Zhang, Chuanlun [1 ,2 ,4 ,5 ]
机构
[1] Southern Marine Sci & Engn Guangdong Lab Guangzhou, Guangzhou 511458, Peoples R China
[2] Southern Univ Sci & Technol, Dept Ocean Sci & Engn, Shenzhen 518055, Peoples R China
[3] Southern Univ Sci & Technol, Sch Environm Sci & Engn, State Environm Protect Key Lab Integrated Surface, Shenzhen 518055, Peoples R China
[4] Univ Southern Univ Sci & Technol, Shenzhen Key Lab Marine Archaea Geo Omics, Shenzhen 518055, Peoples R China
[5] Shanghai Earthquake Agcy, Shanghai Sheshan Natl Geophys Observ, Shanghai 200062, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
Raman spectroscopy; Environmental microorganisms; Single cells; Metabolic activities; SINGLE-CELL RAMAN; RELEVANT MICROORGANISMS; HYBRIDIZATION FISH; BACTERIAL-CELLS; SPECTRA; TOOL; MICROSPECTROSCOPY; METABOLOMICS; TISSUE; RNA;
D O I
10.1016/j.ese.2022.100187
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Microorganisms in natural environments are crucial in maintaining the material and energy cycle and the ecological balance of the environment. However, it is challenging to delineate environmental microbes' actual metabolic pathways and intraspecific heterogeneity because most microorganisms cannot be cultivated. Raman spectroscopy is a culture-independent technique that can collect molecular vibration profiles from cells. It can reveal the physiological and biochemical information at the single-cell level rapidly and non-destructively in situ. The first part of this review introduces the principles, advantages, progress, and analytical methods of Raman spectroscopy applied in environmental microbiology. The second part summarizes the applications of Raman spectroscopy combined with stable isotope probing (SIP), fluorescence in situ hybridization (FISH), Raman-activated cell sorting and genomic sequencing, and machine learning in microbiological studies. Finally, this review discusses expectations of Raman spectroscopy and future advances to be made in identifying microorganisms, especially for uncultured microorganisms. (c) 2022 The Authors. Published by Elsevier B.V. on behalf of Chinese Society for Environmental Sciences, Harbin Institute of Technology, Chinese Research Academy of Environmental Sciences. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Raman spectroscopy in head and neck cancer
    Harris, Andrew T.
    Rennie, Andrew
    Waqar-Uddin, Haroon
    Wheatley, Sarah R.
    Ghosh, Samit K.
    Martin-Hirsch, Dominic P.
    Fisher, Sheila E.
    High, Alec S.
    Kirkham, Jennifer
    Upile, Tahwinder
    HEAD & NECK ONCOLOGY, 2010, 2
  • [22] Discrimination of microorganisms and cells in tissue engineering by Raman spectroscopy
    Koch, Steffen
    Dreiling, Marieke
    Gutekunst, Matthias
    Bolwien, Carsten
    Thielecke, Hagen
    Mertsching, Heike
    CLINICAL AND BIOMEDICAL SPECTROSCOPY, 2009, 7368
  • [23] Thermally Stimulated and Dynamic Effects in Identification and Study of Carbon Materials by Raman Spectroscopy
    Isaenko, S. I.
    Shumilova, T. G.
    UCHENYE ZAPISKI KAZANSKOGO UNIVERSITETA-SERIYA ESTESTVENNYE NAUKI, 2021, 163 (01): : 72 - 87
  • [24] Identification of blood cell changes in pediatric oncological patients through Raman spectroscopy
    Daniel, Camila Ribeiro
    Pacheco, Marcos Tadeu Tavares
    Lima, Ana Mara Ferreira
    de Brito, Pedro Luiz
    Silveira Jr, Landulfo
    JOURNAL OF RAMAN SPECTROSCOPY, 2023, 54 (10) : 1043 - 1055
  • [25] Identification of biotic and abiotic particles by using a combination of optical tweezers and in situ Raman spectroscopy
    Gessner, R
    Winter, C
    Rösch, P
    Schmitt, M
    Petry, R
    Kiefer, W
    Lankers, M
    Popp, J
    CHEMPHYSCHEM, 2004, 5 (08) : 1159 - 1170
  • [26] In situ identification of TATP and DADP particles collected with transparent tape by Raman spectroscopy and imaging
    Sun, Zhenwen
    Zhang, Guannan
    Li, Yonggang
    Qiao, Ting
    Liu, Zhanfang
    Wang, Ping
    Li, Guangyao
    Zhou, Zheng
    Zheng, Jili
    Li, Yajun
    Zhu, Jun
    Liu, Yao
    ANALYTICAL METHODS, 2021, 13 (43) : 5173 - 5178
  • [27] In situ defect quantification and phase identification during ash sintering using Raman spectroscopy
    Murray, Shannon E.
    Lv, Guangxin
    Sulekar, Soumitra S.
    Cahill, David G.
    Shoemaker, Daniel P.
    JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2021, 104 (08) : 3873 - 3882
  • [28] Raman spectroscopy for screening and diagnosis of cervical cancer
    Lyng, Fiona M.
    Traynor, Damien
    Ramos, Ines R. M.
    Bonnier, Franck
    Byrne, Hugh J.
    ANALYTICAL AND BIOANALYTICAL CHEMISTRY, 2015, 407 (27) : 8279 - 8289
  • [29] Identification of Pediatric Brain Neoplasms Using Raman Spectroscopy
    Leslie, David G.
    Kast, Rachel E.
    Poulik, Janet M.
    Rabah, Raja
    Sood, Sandeep
    Auner, Gregory W.
    Klein, Michael D.
    PEDIATRIC NEUROSURGERY, 2012, 48 (02) : 109 - 117
  • [30] Infrared and Raman spectroscopy techniques applied to identification of explosives
    Lopez-Lopez, Maria
    Garcia-Ruiz, Carmen
    TRAC-TRENDS IN ANALYTICAL CHEMISTRY, 2014, 54 : 36 - 44