Induction of human β-defensin 2 by the probiotic Escherichia coli nissle 1917 is mediated throuah flagellin

被引:246
作者
Schlee, Miriam
Wehkamp, Jan
Altenhoefer, Artur
Oelschlaeger, Tobias A.
Stange, Eduard F.
Fellermann, Klaus
机构
[1] Robert Bosch Krankenhaus, Dept Internal Med 1, D-70376 Stuttgart, Germany
[2] Dr Margarete Fischer Bosch Inst Clin Pharmacol, Stuttgart, Germany
[3] Univ Wurzburg, Inst Mol Biol Infect, Wurzburg, Germany
关键词
D O I
10.1128/IAI.01563-06
中图分类号
R392 [医学免疫学]; Q939.91 [免疫学];
学科分类号
100102 ;
摘要
Human beta-defensin 2 (hBD-2) is an inducible antimicrobial peptide synthesized by the epithelium to counteract bacterial adherence and invasion. Proinflammatory cytokines, as well as certain bacterial strains, have been identified as potent endogenous inducers. Recently, we have found that hBD-2 induction by probiotic Escherichia coli Nissle 1917 was mediated through NF-kappa B- and AP-1-dependent pathways. The aim of the present study was to identify the responsible bacterial factor. E. coli Nissle 1917 culture supernatant was found to be more potent than the pellet, indicating a soluble or shed factor. Chemical analysis demonstrated the factor to be heat resistant and proteinase digestible. Several E. coli Nissle 1917 deletion mutants were constructed and tested for their ability to induce hBD-2 expression in Caco-2 cells. Deletion mutants for flagellin specifically exhibited an impaired immunostimulatory capacity. Reinsertion of the flagellin gene restored the induction capacity to normal levels. Isolated flagellin from E. coli Nissle 1917 and from Salmonella enterica serovar Enteritidis induced hBD-2 mRNA significantly in contrast to the flagellin of the apathogenic E. coli strain ATCC 25922. H1 flagellin antiserum abrogated hBD-2 expression induced by flagellin as well as E. coli Nissle 1917 supernatant, confirming that flagellin is the major stimulatory factor of E. coli Nissle 1917.
引用
收藏
页码:2399 / 2407
页数:9
相关论文
共 43 条
[1]   The probiotic Escherichia coli strain Nissle 1917 interferes with invasion of human intestinal epithelial cells by different enteroinvasive bacterial pathogens [J].
Altenhoefer, A ;
Oswald, S ;
Sonnenborn, U ;
Enders, C ;
Schulze, J ;
Hacker, J ;
Oelschlaeger, TA .
FEMS IMMUNOLOGY AND MEDICAL MICROBIOLOGY, 2004, 40 (03) :223-229
[2]   Variation in bacterial flagellins: from sequence to structure [J].
Beatson, SA ;
Minamino, T ;
Pallen, MJ .
TRENDS IN MICROBIOLOGY, 2006, 14 (04) :151-155
[3]   Pre-, pro- and synbiotics [J].
Bengmark, S .
CURRENT OPINION IN CLINICAL NUTRITION AND METABOLIC CARE, 2001, 4 (06) :571-579
[4]   The human Lactobacillus acidophilus strain LA1 secretes a nonbacteriocin antibacterial substance(s) active in vitro and in vivo [J].
BernetCamard, MF ;
Lievin, V ;
Brassart, D ;
Neeser, JR ;
Servin, AL ;
Hudault, S .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 1997, 63 (07) :2747-2753
[5]   Inhibitory effect of probiotic Escherichia coli strain Nissle 1917 on adhesion to and invasion of intestinal epithelial cells by adherent-invasive E-coli strains isolated from patients with Crohn's disease [J].
Boudeau, J ;
Glasser, AL ;
Julien, S ;
Colombel, JF ;
Darfeuille-Michaud, A .
ALIMENTARY PHARMACOLOGY & THERAPEUTICS, 2003, 18 (01) :45-56
[6]   One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products [J].
Datsenko, KA ;
Wanner, BL .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (12) :6640-6645
[7]   DIVERSE PSEUDOMONAS-AERUGINOSA GENE-PRODUCTS STIMULATE RESPIRATORY EPITHELIAL-CELLS TO PRODUCE INTERLEUKIN-8 [J].
DIMANGO, E ;
ZAR, HJ ;
BRYAN, R ;
PRINCE, A .
JOURNAL OF CLINICAL INVESTIGATION, 1995, 96 (05) :2204-2210
[8]   Flagellin, a novel mediator of Salmonella-induced epithelial activation and systemic inflammation:: IκBα degradation, induction of nitric oxide synthase, induction of proinflammatory mediators, and cardiovascular dysfunction [J].
Eaves-Pyles, T ;
Murthy, K ;
Liaudet, L ;
Virág, L ;
Ross, G ;
Soriano, FG ;
Szabó, C ;
Salzman, AL .
JOURNAL OF IMMUNOLOGY, 2001, 166 (02) :1248-1260
[9]  
Gaon D, 2003, MEDICINA-BUENOS AIRE, V63, P293
[10]   Cutting edge: Bacterial flagellin activates basolaterally expressed TLR5 to induce epithelial proinflammatory gene expression [J].
Gewirtz, AT ;
Navas, TA ;
Lyons, S ;
Godowski, PJ ;
Madara, JL .
JOURNAL OF IMMUNOLOGY, 2001, 167 (04) :1882-1885