Existence and multiplicity of solutions for a fractional p-Laplacian equation with perturbation

被引:2
作者
Zhi, Zhen [1 ,2 ,3 ]
Yan, Lijun [4 ]
Yang, Zuodong [5 ,6 ]
机构
[1] Changzhou Univ, Sch Comp Sci & Artificial Intelligence, Changzhou 213164, Jiangsu, Peoples R China
[2] Changzhou Univ, Aliyun Sch Big Data, Changzhou 213164, Jiangsu, Peoples R China
[3] Nanjing Normal Univ, Sch Math Sci, Inst Math, Nanjing 210023, Jiangsu, Peoples R China
[4] North China Inst Sci & Technol, Sch Sci, Sanhe 065201, Hebei, Peoples R China
[5] Nanjing Normal Univ, Sch Teacher Educ, Nanjing 210097, Jiangsu, Peoples R China
[6] Nanjing Univ Informat Sci & Technol, Sch Teacher Educ, Nanjing 210044, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Multiplicity results; Fractional p-Laplacian; Critical points;
D O I
10.1186/s13660-021-02635-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the existence of nontrivial solutions for a fractional p-Laplacian equation in a bounded domain. Under different assumptions of nonlinearities, we give existence and multiplicity results respectively. Our approach is based on variational methods and some analytical techniques.
引用
收藏
页数:13
相关论文
共 18 条
[1]  
Ambrosio V, 2016, ELECTRON J DIFFER EQ
[2]   Some remarks on a three critical points theorem [J].
Bonanno, G .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2003, 54 (04) :651-665
[3]   Existence theorems for entire solutions of stationary Kirchhoff fractional p-Laplacian equations [J].
Caponi, Maicol ;
Pucci, Patrizia .
ANNALI DI MATEMATICA PURA ED APPLICATA, 2016, 195 (06) :2099-2129
[4]   Multiple solutions for fractional p-Laplace equation with concave-convex nonlinearities [J].
Chen, Qiang ;
Chen, Caisheng ;
Shi, Yanling .
BOUNDARY VALUE PROBLEMS, 2020, 2020 (01)
[5]   Local behavior of fractional p-minimizers [J].
Di Castro, Agnese ;
Kuusi, Tuomo ;
Palatucci, Giampiero .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2016, 33 (05) :1279-1299
[6]   Hitchhiker's guide to the fractional Sobolev spaces [J].
Di Nezza, Eleonora ;
Palatucci, Giampiero ;
Valdinoci, Enrico .
BULLETIN DES SCIENCES MATHEMATIQUES, 2012, 136 (05) :521-573
[7]  
Franzina G, 2014, RIV MAT UNIV PARMA, V5, P373
[8]   Existence results for fractional p-Laplacian problems via Morse theory [J].
Iannizzotto, Antonio ;
Liu, Shibo ;
Perera, Kanishka ;
Squassina, Marco .
ADVANCES IN CALCULUS OF VARIATIONS, 2016, 9 (02) :101-125
[9]   A critical point theorem related to the symmetric mountain pass lemma and its applications to elliptic equations [J].
Kajikiya, R .
JOURNAL OF FUNCTIONAL ANALYSIS, 2005, 225 (02) :352-370
[10]  
Lehrer R, 2015, DIFFER INTEGRAL EQU, V28, P15