Optimality and duality in nondifferentiable and multiobjective programming under generalized d-Invexity

被引:32
作者
Mishra, SK [1 ]
Wang, SY
Lai, KK
机构
[1] Govind Ballabh Pant Univ Agr & Technol, Coll Basic Sci & Humanities, Dept Math Stat & C Sc, Pantnagar 263145, Uttar Pradesh, India
[2] Chinese Acad Sci, Acad Math & Syst Sci, Inst Syst Sci, Beijing 100080, Peoples R China
[3] City Univ Hong Kong, Dept Management Sci, Hong Kong, Hong Kong, Peoples R China
基金
中国国家自然科学基金;
关键词
duality; generalized d-Invexity; multiobjective programming; optimality; pareto efficient solution;
D O I
10.1023/B:JOGO.0000047912.69270.8c
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this paper, we are concerned with the nondifferentiable multiobjective programming problem with inequality constraints. We introduce four new classes of generalized d-type-I functions. By utilizing the new concepts, Antczak type Karush-Kuhn-Tucker sufficient optimality conditions, Mond-Weir type and general Mond-Weir type duality results are obtained for nondifferentiable and multiobjective programming.
引用
收藏
页码:425 / 438
页数:14
相关论文
共 25 条
[1]   Generalized invexity and duality in multiobjective programming problems [J].
Aghezzaf, B ;
Hachimi, M .
JOURNAL OF GLOBAL OPTIMIZATION, 2000, 18 (01) :91-101
[2]  
[Anonymous], 2004, NONLINEAR PROGRAMMIN
[3]   Multiobjective programming under d-invexity [J].
Antczak, T .
EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2002, 137 (01) :28-36
[4]  
Bector C. R., 1992, P ADM SCI ASS CAN, P115
[5]  
Craven B. D., 1986, Optimization, V17, P3, DOI 10.1080/02331938608843097
[6]   INVEX FUNCTIONS AND CONSTRAINED LOCAL MINIMA [J].
CRAVEN, BD .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 1981, 24 (03) :357-366
[7]   MULTIOBJECTIVE DUALITY WITH INVEXITY [J].
EGUDO, RR ;
HANSON, MA .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1987, 126 (02) :469-477
[8]   NECESSARY AND SUFFICIENT CONDITIONS IN CONSTRAINED OPTIMIZATION [J].
HANSON, MA ;
MOND, B .
MATHEMATICAL PROGRAMMING, 1987, 37 (01) :51-58
[9]   ON SUFFICIENCY OF THE KUHN-TUCKER CONDITIONS [J].
HANSON, MA .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1981, 80 (02) :545-550
[10]   ON GENERALIZED CONVEX MATHEMATICAL-PROGRAMMING [J].
JEYAKUMAR, V ;
MOND, B .
JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY SERIES B-APPLIED MATHEMATICS, 1992, 34 :43-53