Enhanced photoelectrochemical property of ZnO nanorods array synthesized on reduced graphene oxide for self-powered biosensing application

被引:137
作者
Kang, Zhuo [1 ]
Gu, Yousong [1 ]
Yan, Xiaoqin [1 ]
Bai, Zhiming [1 ]
Liu, Yichong [1 ]
Liu, Shuo [1 ]
Zhang, Xiaohui [1 ]
Zhang, Zheng [1 ]
Zhang, Xueji [2 ]
Zhang, Yue [1 ,3 ]
机构
[1] Univ Sci & Technol Beijing, Sch Mat Sci & Engn, State Key Lab Adv Met & Mat, 30 Xueyuan Rd, Beijing 100083, Peoples R China
[2] Univ Sci & Technol Beijing, Res Ctr Bioengn & Sensing Technol, Sch Chem & Biol Engn, Beijing 100083, Peoples R China
[3] Univ Sci & Technol Beijing, Key Lab New Energy Mat & Technol, Beijing 100083, Peoples R China
基金
中国国家自然科学基金;
关键词
Photoelectrochemical biosensor; Reduced graphene oxide; ZnO nanorods array; Glutathione; Photoresponse; P-N HETEROJUNCTION; GLUTATHIONE; NANOWIRE; ELECTRODE; FILMS; DNA;
D O I
10.1016/j.bios.2014.09.055
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
We have realized the direct synthesis of ZnO nanorods (ZnO NRs) array on reduced graphene layer (rGO), and demonstrated the enhanced photoelectrochemical (PEC) property of the rGO/ZnO based photoanode under UV irradiation compared with the pristine ZnO NRs array. The introduction of the rGO layer resulted in a favorable energy band structure for electron migration, which finally led to the efficient photoinduced charge separation. Such nanostructure was subsequently employed for self-powered PEC biosensing of glutathione in the condition of 0 V bias, with a linear range from 10 to 200 mu M, a detection limit of 2.17 mu M, as well as excellent selectivity, reproducibility and stability. The results indicated the rGO/ZnO nanostructure is a competitive candidate in the PEC biosensing field. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:499 / 504
页数:6
相关论文
共 32 条
[1]   Use of microchip electrophoresis and a palladium/mercury amalgam electrode for the separation and detection of thiols [J].
Antwi, Christiana ;
Johnson, Alicia S. ;
Selimovic, Asmira ;
Martin, R. Scott .
ANALYTICAL METHODS, 2011, 3 (05) :1072-1078
[2]   A highly sensitive ultraviolet sensor based on a facile in situ solution-grown ZnO nanorod/graphene heterostructure [J].
Chang, Haixin ;
Sun, Zhenhua ;
Ho, Keith Yat-Fung ;
Tao, Xiaoming ;
Yan, Feng ;
Kwok, Wai-Ming ;
Zheng, Zijian .
NANOSCALE, 2011, 3 (01) :258-264
[3]   Photoelectrocatalytic Oxidation of Glutathione Based on Porous TiO2-Pt Nanowhiskers [J].
Chen, Guihua ;
Wang, Jianling ;
Wu, Changyu ;
Li, Chen-zhong ;
Jiang, Hui ;
Wang, Xuemei .
LANGMUIR, 2012, 28 (33) :12393-12399
[4]   Selective Growth of ZnO Nanorods on SiO2/Si Substrates Using a Graphene Buffer Layer [J].
Choi, Won Mook ;
Shin, Kyung-Sik ;
Lee, Hyo Sug ;
Choi, Dukhyun ;
Kim, Kihong ;
Shin, Hyeon-Jin ;
Yoon, Seon-Mi ;
Choi, Jae-Young ;
Kim, Sang-Woo .
NANO RESEARCH, 2011, 4 (05) :440-447
[5]   An environmentally friendly and efficient route for the reduction of graphene oxide by aluminum powder [J].
Fan, Zhuangjun ;
Wang, Kai ;
Wei, Tong ;
Yan, Jun ;
Song, Liping ;
Shao, Bo .
CARBON, 2010, 48 (05) :1686-1689
[6]   The rise of graphene [J].
Geim, A. K. ;
Novoselov, K. S. .
NATURE MATERIALS, 2007, 6 (03) :183-191
[7]   Local field effects on electron transport in nanostructured TiO2 revealed by terahertz spectroscopy [J].
Hendry, E ;
Koeberg, M ;
O'Regan, B ;
Bonn, M .
NANO LETTERS, 2006, 6 (04) :755-759
[8]   Photoelectrochemical sensing for hydroquinone based on porphyrin-functionalized Au nanoparticles on graphene [J].
Hu, Yaqi ;
Xue, Zhonghua ;
He, Hongxia ;
Ai, Ruixia ;
Liu, Xiuhui ;
Lu, Xiaoquan .
BIOSENSORS & BIOELECTRONICS, 2013, 47 :45-49
[9]   High electron mobility of epitaxial ZnO thin films on c-plane sapphire grown by multistep pulsed-laser deposition [J].
Kaidashev, EM ;
Lorenz, M ;
von Wenckstern, H ;
Rahm, A ;
Semmelhack, HC ;
Han, KH ;
Benndorf, G ;
Bundesmann, C ;
Hochmuth, H ;
Grundmann, M .
APPLIED PHYSICS LETTERS, 2003, 82 (22) :3901-3903
[10]   Controlled Growth of Semiconducting Nanowire, Nanowall, and Hybrid Nanostructures on Graphene for Piezoelectric Nanogenerators [J].
Kumar, Brijesh ;
Lee, Keun Young ;
Park, Hyun-Kyu ;
Chae, Seung Jin ;
Lee, Young Hee ;
Kim, Sang-Woo .
ACS NANO, 2011, 5 (05) :4197-4204