On complete moment convergence for CAANA random vectors in Hilbert spaces

被引:13
作者
Ko, Mi-Hwa [1 ]
机构
[1] Wonkwang Univ, Div Math & Informat Stat, Jeonbuk 54358, South Korea
关键词
Complete moment convergence; Coordinatewise asymptotically almost negatively associated random vectors; Hilbert spaces; RANDOM-VARIABLES; LARGE NUMBERS; STRONG LAW; SEQUENCES; AANA;
D O I
10.1016/j.spl.2018.02.068
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
For a sequence {X-n, n >= 1} of coordinatewise asymptotically almost negatively associated random vectors in Hilbert space, we investigate the convergence of E(n=1)(infinity)1/1+alpha! E(max(1 <= k <= n) ||S-k|| - is an element of n(alpha)) + and Sigma(infinity)(n=1)logn/1+alpha E(maxl <= k <= n||S-k|| - is an element of n(alpha))(+), where Sk = Sigma X-k(i=1)i and a(+) = max{a, 0}. This investigation provides the complete moment convergence for the case alpha r = 1. 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:104 / 110
页数:7
相关论文
共 13 条
[1]   The strong law of large numbers for weighted averages under dependence assumptions [J].
Chandra, TK ;
Ghosal, S .
JOURNAL OF THEORETICAL PROBABILITY, 1996, 9 (03) :797-809
[2]   Extensions of the strong law of large numbers of Marcinkiewicz and Zygmund for dependent variables [J].
Chandra, TK ;
Ghosal, S .
ACTA MATHEMATICA HUNGARICA, 1996, 71 (04) :327-336
[3]  
Chow Y. S., 1988, B I MATH ACAD SIN, V16, P177
[4]   COMPLETE CONVERGENCE AND THE LAW OF LARGE NUMBERS [J].
HSU, PL ;
ROBBINS, H .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1947, 33 (02) :25-31
[5]   ON THE COMPLETE CONVERGENCE FOR SEQUENCES OF RANDOM VECTORS IN HILBERT SPACES [J].
Huan, N. V. .
ACTA MATHEMATICA HUNGARICA, 2015, 147 (01) :205-219
[6]   Baum-Katz Type Theorems For Coordinatewise Negatively Associated Random Vectors In Hilbert Spaces [J].
Huan, N. V. ;
Quang, N. V. ;
Thuan, N. T. .
ACTA MATHEMATICA HUNGARICA, 2014, 144 (01) :132-149
[7]   The Hajeck-Renyi inequality for the AANA random variables and its applications [J].
Ko, MH ;
Kim, TS ;
Lin, ZY .
TAIWANESE JOURNAL OF MATHEMATICS, 2005, 9 (01) :111-122
[8]   A Note on the Almost Sure Convergence for Dependent Random Variables in a Hilbert Space [J].
Ko, Mi-Hwa ;
Kim, Tae-Sung ;
Han, Kwang-Hee .
JOURNAL OF THEORETICAL PROBABILITY, 2009, 22 (02) :506-513
[9]   Strong convergence for sequences of asymptotically almost negatively associated random variables [J].
Shen, Aiting ;
Wu, Ranchao .
STOCHASTICS-AN INTERNATIONAL JOURNAL OF PROBABILITY AND STOCHASTIC PROCESSES, 2014, 86 (02) :291-303
[10]   Some strong laws of large numbers for weighted sums of asymptotically almost negatively associated random variables [J].
Tang, Xiaofeng .
JOURNAL OF INEQUALITIES AND APPLICATIONS, 2013,