Polynomial interpolation on the unit sphere II

被引:8
作者
Castell, Wolfgang zu
Fernandez, Noemi Lain
Xu, Yuan
机构
[1] GSF, Natl Res Ctr Environm & Hlth, Inst Biomath & Biometry, D-85764 Neuherberg, Germany
[2] Univ Oregon, Dept Math, Eugene, OR 97403 USA
基金
美国国家科学基金会;
关键词
interpolation; spherical polynomials; unit sphere;
D O I
10.1007/s10444-005-7510-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The problem of interpolation at (n + 1)(2) points on the unit sphere S-2 by spherical polynomials of degree at most n is proved to have a unique solution for several sets of points. The points are located on a number of circles on the sphere with even number of points on each circle. The proof is based on a method of factorization of polynomials.
引用
收藏
页码:155 / 171
页数:17
相关论文
共 15 条
[1]   On a Hermite interpolation by polynomials of two variables [J].
Bojanov, B ;
Xu, Y .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2002, 39 (05) :1780-1793
[2]   On polynomial interpolation of two variables [J].
Bojanov, B ;
Xu, Y .
JOURNAL OF APPROXIMATION THEORY, 2003, 120 (02) :267-282
[3]   Interpolatory band-limited wavelet bases on the sphere [J].
Fernández, NL ;
Prestin, J .
CONSTRUCTIVE APPROXIMATION, 2006, 23 (01) :79-101
[4]  
FERNANDEZ NL, 2003, THESIS U LUBECK
[5]   Polynomial interpolation in several variables [J].
Gasca, M ;
Sauer, T .
ADVANCES IN COMPUTATIONAL MATHEMATICS, 2000, 12 (04) :377-410
[6]  
GOLITSCHEK MV, 2001, CONSTR APPROX, V17, P1
[7]   On a bivariate interpolation problem [J].
Hakopian, HA ;
Ismail, SAM .
JOURNAL OF APPROXIMATION THEORY, 2002, 116 (01) :76-99
[8]  
Macdonald I, 1995, SYMMETRIC FUNCTIONS, VSecond
[9]   On some cubature formulas on the sphere [J].
Prestin, Juergen ;
Rosca, Daniela .
JOURNAL OF APPROXIMATION THEORY, 2006, 142 (01) :1-19
[10]  
Stroud AH., 1971, Approximate Calculation of Multiple Integrals