Self-similar sets with initial cubic patterns

被引:55
作者
Xi, Li-Feng [1 ]
Xiong, Ying [2 ]
机构
[1] Zhejiang Wanli Univ, Inst Math, Ningbo 315100, Zhejiang, Peoples R China
[2] S China Univ Technol, Dept Math, Guangzhou 510641, Guangdong, Peoples R China
关键词
LIPSCHITZ EQUIVALENCE; HAUSDORFF DIMENSION; CANTOR SETS;
D O I
10.1016/j.crma.2009.12.006
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For A subset of {0, ..., n - 1}(m), let E(A) be the unique nonempty compact subset of R(m) such that E(A) = boolean OR(a is an element of A) (1/nE(A) + a/n). We show that two such self-similar sets E(A) and E(B) (for A, B subset of {0, ..., n - 1}(m)), supposed to be totally disconnected, are Lipschitz equivalent if and only if #A = #B. (C) 2009 Academie des sciences. Published by Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:15 / 20
页数:6
相关论文
共 9 条
[1]  
COOPER D, 1988, J DIFFER GEOM, V28, P203
[2]  
David G., 1997, OXFORD LECT SERIES M, V7
[3]   Classification of quasi-circles by Hausdorff dimension [J].
Falconer, K. J. ;
Marsh, D. T. .
NONLINEARITY, 1989, 2 (03) :489-493
[4]   ON THE LIPSCHITZ EQUIVALENCE OF CANTOR SETS [J].
FALCONER, KJ ;
MARSH, DT .
MATHEMATIKA, 1992, 39 (78) :223-233
[5]   HAUSDORFF DIMENSION IN GRAPH DIRECTED CONSTRUCTIONS [J].
MAULDIN, RD ;
WILLIAMS, SC .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1988, 309 (02) :811-829
[6]   Lipschitz equivalence of self-similar sets [J].
Rao, H ;
Ruan, HJ ;
Xi, LF .
COMPTES RENDUS MATHEMATIQUE, 2006, 342 (03) :191-196
[7]   Relations among Whitney sets, self-similar arcs and quasi-arcs [J].
Wen, ZY ;
Xi, LF .
ISRAEL JOURNAL OF MATHEMATICS, 2003, 136 (1) :251-267
[8]   Lipschitz equivalence of self-conformal sets [J].
Xi, LF .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2004, 70 :369-382
[9]   Quasi-Lipschitz equivalence of fractals [J].
Xi, Li-Feng .
ISRAEL JOURNAL OF MATHEMATICS, 2007, 160 (01) :1-21