Strong instability of standing waves for a nonlocal Schrodinger equation

被引:54
作者
Chen, Jianqing
Guo, Boling
机构
[1] Fujian Normal Univ, Sch Math & Comp Sci, Fuzhou 350007, Peoples R China
[2] Inst Appl Phys & Computat Math, Beijing 100088, Peoples R China
关键词
variational methods; blow up; strong instability; nonlocal Schrodinger equation; NON-LINEAR SCHRODINGER; CONCENTRATION-COMPACTNESS PRINCIPLE; CAUCHY-PROBLEM; CALCULUS; STATES;
D O I
10.1016/j.physd.2007.01.004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Variational methods are used to prove that the solutions of the nonlocal Schrodinger equation i phi(t)+Delta phi+phi vertical bar phi vertical bar(p-2)(V(x)*vertical bar phi vertical bar(p)) = 0, x is an element of R-N must blow up for a class of initial data with nonnegative energy and some restriction on p. Then using this we prove that the standing wave must be H 1 (RN) strongly unstable with respect to the nonlocal nonlinear Schrodinger equation. (c) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:142 / 148
页数:7
相关论文
共 16 条
[1]  
[Anonymous], 1989, Textos de Metodos Matematicos
[2]  
BERESTYCKI H, 1981, CR ACAD SCI I-MATH, V293, P489
[3]   ORBITAL STABILITY OF STANDING WAVES FOR SOME NON-LINEAR SCHRODING EQUATIONS [J].
CAZENAVE, T ;
LIONS, PL .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1982, 85 (04) :549-561
[4]   CLASS OF NON-LINEAR SCHRODINGER EQUATIONS .2. SCATTERING THEORY, GENERAL-CASE [J].
GINIBRE, J ;
VELO, G .
JOURNAL OF FUNCTIONAL ANALYSIS, 1979, 32 (01) :33-71
[5]   CLASS OF NON-LINEAR SCHRODINGER-EQUATIONS WITH NON LOCAL INTERACTION [J].
GINIBRE, J ;
VELO, G .
MATHEMATISCHE ZEITSCHRIFT, 1980, 170 (02) :109-136
[6]   CLASS OF NON-LINEAR SCHRODINGER EQUATIONS .1. CAUCHY-PROBLEM, GENERAL-CASE [J].
GINIBRE, J ;
VELO, G .
JOURNAL OF FUNCTIONAL ANALYSIS, 1979, 32 (01) :1-32
[7]   BLOWING UP OF SOLUTIONS TO CAUCHY-PROBLEM FOR NONLINEAR SCHRODINGER EQUATIONS [J].
GLASSEY, RT .
JOURNAL OF MATHEMATICAL PHYSICS, 1977, 18 (09) :1794-1797
[8]  
Gross E.P., 1966, PHYS MANY PARTICLE S, V1, P231
[9]  
Guo D., 1989, J APPL MATH SIMULATI, V2, P1, DOI DOI 10.1155/S1048953389000018
[10]  
LIONS PL, 1984, ANN I H POINCARE-AN, V1, P223