Competing Ultrafast Energy Relaxation Pathways in Photoexcited Graphene

被引:102
作者
Jensen, S. A. [1 ,2 ]
Mics, Z. [1 ]
Ivanov, I. [1 ]
Varol, H. S. [1 ]
Turchinovich, D. [1 ]
Koppens, F. H. L. [3 ]
Bonn, M. [1 ]
Tielrooij, K. J. [3 ]
机构
[1] Max Planck Inst Polymer Res, D-55128 Mainz, Germany
[2] FOM Inst AMOLF, NL-1098 XG Amsterdam, Netherlands
[3] ICFO Inst Cencies Foton, Castelldefels 08860, Barcelona, Spain
基金
欧洲研究理事会;
关键词
Graphene; ultrafast; hot carrier; terahertz; pump-probe; CARRIER-MULTIPLICATION; TERAHERTZ; DYNAMICS; SPECTROSCOPY;
D O I
10.1021/nl502740g
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
For most optoelectronic applications of graphene, a thorough understanding of the processes that govern energy relaxation of photoexcited carriers is essential. The ultrafast energy relaxation in graphene occurs through two competing pathways: carriercarrier scattering, creating an elevated carrier temperature, and optical phonon emission. At present, it is not clear what determines the dominating relaxation pathway. Here we reach a unifying picture of the ultrafast energy relaxation by investigating the terahertz photoconductivity, while varying the Fermi energy, photon energy and fluence over a wide range. We find that sufficiently low fluence (less than or similar to 4 mu J/cm(2)) in conjunction with sufficiently high Fermi energy (greater than or similar to 0.1 eV) gives rise to energy relaxation that is dominated by carriercarrier scattering, which leads to efficient carrier heating. Upon increasing the fluence or decreasing the Fermi energy, the carrier heating efficiency decreases, presumably due to energy relaxation that becomes increasingly dominated by phonon emission. Carrier heating through carriercarrier scattering accounts for the negative photoconductivity for doped graphene observed at terahertz frequencies. We present a simple model that reproduces the data for a wide range of Fermi levels and excitation energies and allows us to qualitatively assess how the branching ratio between the two distinct relaxation pathways depends on excitation fluence and Fermi energy.
引用
收藏
页码:5839 / 5845
页数:7
相关论文
共 30 条
[1]   Screening effect and impurity scattering in monolayer graphene [J].
Ando, Tsuneya .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2006, 75 (07)
[2]  
Bonaccorso F, 2010, NAT PHOTONICS, V4, P611, DOI [10.1038/nphoton.2010.186, 10.1038/NPHOTON.2010.186]
[3]   Ultrafast nonequilibrium carrier dynamics in a single graphene layer [J].
Breusing, M. ;
Kuehn, S. ;
Winzer, T. ;
Malic, E. ;
Milde, F. ;
Severin, N. ;
Rabe, J. P. ;
Ropers, C. ;
Knorr, A. ;
Elsaesser, T. .
PHYSICAL REVIEW B, 2011, 83 (15)
[4]   Ultrafast collinear scattering and carrier multiplication in graphene [J].
Brida, D. ;
Tomadin, A. ;
Manzoni, C. ;
Kim, Y. J. ;
Lombardo, A. ;
Milana, S. ;
Nair, R. R. ;
Novoselov, K. S. ;
Ferrari, A. C. ;
Cerullo, G. ;
Polini, M. .
NATURE COMMUNICATIONS, 2013, 4
[5]   Electronic transport in two-dimensional graphene [J].
Das Sarma, S. ;
Adam, Shaffique ;
Hwang, E. H. ;
Rossi, Enrico .
REVIEWS OF MODERN PHYSICS, 2011, 83 (02) :407-470
[6]   Measurement of the optical absorption spectra of epitaxial graphene from terahertz to visible [J].
Dawlaty, Jahan M. ;
Shivaraman, Shriram ;
Strait, Jared ;
George, Paul ;
Chandrashekhar, Mvs ;
Rana, Farhan ;
Spencer, Michael G. ;
Veksler, Dmitry ;
Chen, Yunqing .
APPLIED PHYSICS LETTERS, 2008, 93 (13)
[7]   Extreme sensitivity of graphene photoconductivity to environmental gases [J].
Docherty, Callum J. ;
Lin, Cheng-Te ;
Joyce, Hannah J. ;
Nicholas, Robin J. ;
Herz, Laura M. ;
Li, Lain-Jong ;
Johnston, Michael B. .
NATURE COMMUNICATIONS, 2012, 3
[8]   Semiconducting-to-Metallic Photoconductivity Crossover and Temperature-Dependent Drude Weight in Graphene [J].
Frenzel, A. J. ;
Lui, C. H. ;
Shin, Y. C. ;
Kong, J. ;
Gedik, N. .
PHYSICAL REVIEW LETTERS, 2014, 113 (05)
[9]   Observation of suppressed terahertz absorption in photoexcited graphene [J].
Frenzel, A. J. ;
Lui, C. H. ;
Fang, W. ;
Nair, N. L. ;
Herring, P. K. ;
Jarillo-Herrero, P. ;
Kong, J. ;
Gedik, N. .
APPLIED PHYSICS LETTERS, 2013, 102 (11)
[10]   Hot Carrier-Assisted Intrinsic Photoresponse in Graphene [J].
Gabor, Nathaniel M. ;
Song, Justin C. W. ;
Ma, Qiong ;
Nair, Nityan L. ;
Taychatanapat, Thiti ;
Watanabe, Kenji ;
Taniguchi, Takashi ;
Levitov, Leonid S. ;
Jarillo-Herrero, Pablo .
SCIENCE, 2011, 334 (6056) :648-652