Relativistic and nonrelativistic solutions for diatomic molecules in the presence of double ring-shaped Kratzer potential

被引:54
作者
Durmus, Aysen [1 ]
Yasuk, Fevziye [1 ]
机构
[1] Erciyes Univ, Dept Phys, TR-38039 Kayseri, Turkey
关键词
D O I
10.1063/1.2566432
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The authors investigate solutions of the three dimensional Klein-Gordon and Schrodinger equations in the presence of a new exactly solvable potential of V(r,theta)=-2D(e)(r(e)/r-(1/2)(r(e)(2)/r(2)))+b/r(2) sin(2) theta+a/r(2) cos(2) theta type, the so-called double ring-shaped Kratzer potential. For a diatomic molecule system in double ring-shaped Kratzer potential, the exact bound state energy eigenvalues and corresponding wave functions have been determined within the framework of the asymptotic iteration method. Bound state eigenfunction solutions used in applications related to molecular spectroscopy are obtained in terms of confluent hypergeometric function and Jacobi polynomial. This new formulation is tested by calculating the energies of rovibrational states of a number of diatomic molecules. Also, the author-prove that in the nonrelativistic limit c ->infinity, where c is the speed of light, solutions of the Klein-Gordon system converge to those of the Schrodinger system. (c) 2007 American Institute of Physics.
引用
收藏
页数:10
相关论文
共 38 条
[1]   Dirac and Klein-Gordon equations with equal scalar and vector potentials [J].
Alhaidari, AD ;
Bahlouli, H ;
Al-Hasan, A .
PHYSICS LETTERS A, 2006, 349 (1-4) :87-97
[2]   The asymptotic iteration method for the eigenenergies of the Schrodinger equation with the potential V(r) = -Z/r plus gr plus λr2 [J].
Barakat, T .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2006, 39 (04) :823-831
[3]   The asymptotic iteration method for the eigenenergies of the anharmonic oscillator potential V(x) = Ax2α + Bx2 [J].
Barakat, T .
PHYSICS LETTERS A, 2005, 344 (06) :411-417
[4]   The asymptotic iteration method for the angular spheroidal eigenvalues [J].
Barakat, T ;
Abodayeh, K ;
Mukheimer, A .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2005, 38 (06) :1299-1304
[5]   Exact analytical solutions to the Kratzer potential by the asymptotic iteration method [J].
Bayrak, O. ;
Boztosun, I. ;
Ciftci, H. .
INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 2007, 107 (03) :540-544
[6]   Asymptotic iteration method solutions to the relativistic Duffin-Kemmer-Petiau equation [J].
Boztosun, I. ;
Karakoc, M. ;
Yasuk, F. ;
Durmus, A. .
JOURNAL OF MATHEMATICAL PHYSICS, 2006, 47 (06)
[7]   APPLICATION OF A 2-STEP METHOD TO THE VIBRATIONAL-ROTATIONAL SPECTRUM OF DIATOMIC-MOLECULES [J].
CHANG, P ;
HSUE, CS .
PHYSICAL REVIEW A, 1994, 49 (06) :4448-4456
[8]   Bound states of the Klein-Gordon equation for ring-shaped Kratzer-type potential [J].
Chao, QW .
CHINESE PHYSICS, 2004, 13 (05) :575-578
[9]   Iterative solutions to the Dirac equation [J].
Ciftci, H ;
Hall, RL ;
Saad, N .
PHYSICAL REVIEW A, 2005, 72 (02)
[10]   Construction of exact solutions to eigenvalue problems by the asymptotic iteration method [J].
Ciftci, H ;
Hall, RL ;
Saad, N .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2005, 38 (05) :1147-1155