Reductions of abelian surfaces over global function fields

被引:6
作者
Maulik, Davesh [1 ]
Shankar, Ananth N. [2 ]
Tang, Yunqing [3 ]
机构
[1] MIT, Dept Math, Simons Bldg Bldg 2,77 Massachusetts Ave, Cambridge, MA 02139 USA
[2] Univ Wisconsin, Dept Math, Van Vleck Hall,480 Lincoln Dr, Madison, WI 53706 USA
[3] Princeton Univ, Dept Math, Fine Hall,Washington Rd, Princeton, NJ 08540 USA
关键词
abelian surfaces; elliptic curves; deformation theory; BORCHERDS PRODUCTS; FORMS; VARIETIES; THEOREM; MODELS; BOUNDS;
D O I
10.1112/S0010437X22007473
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let A be a non-isotrivial ordinary abelian surface over a global function field of characteristic p > 0 with good reduction everywhere. Suppose that A does not have real multiplication by any real quadratic field with discriminant a multiple of p. We prove that there are infinitely many places modulo which A is isogenous to the product of two elliptic curves.
引用
收藏
页码:893 / +
页数:59
相关论文
共 42 条
[1]   Faltings heights of abelian varieties with complex multiplication [J].
Andreatta, Fabrizio ;
Goren, Eyal Z. ;
Howard, Benjamin ;
Pera, Keerthi Madapusi .
ANNALS OF MATHEMATICS, 2018, 187 (02) :391-531
[2]   Height pairings on orthogonal Shimura varieties [J].
Andreatta, Fabrizio ;
Goren, Eyal Z. ;
Howard, Benjamin ;
Pera, Keerthi Madapusi .
COMPOSITIO MATHEMATICA, 2017, 153 (03) :474-534
[3]  
[Anonymous], 2013, Algebraic Number Theory
[4]   Automorphic forms with singularities on Grassmannians [J].
Borcherds, RE .
INVENTIONES MATHEMATICAE, 1998, 132 (03) :491-562
[5]   The Gross-Kohnen-Zagier theorem in higher dimensions [J].
Borcherds, RE .
DUKE MATHEMATICAL JOURNAL, 1999, 97 (02) :219-233
[6]  
Boxer G., 2015, Torsion in the coherent cohomology of Shimura varieties and Galois representations
[7]   Borcherds products and arithmetic intersection theory on Hilbert modular surfaces [J].
Bruinier, Jan H. ;
Burgos Gil, Jose I. ;
Kuehn, Ulf .
DUKE MATHEMATICAL JOURNAL, 2007, 139 (01) :1-88
[8]   Borcherds products with prescribed divisor [J].
Bruinier, Jan Hendrik .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2017, 49 (06) :979-987
[9]   Eisenstein series attached to lattices and modular forms on orthogonal groups [J].
Bruinier, JH ;
Kuss, M .
MANUSCRIPTA MATHEMATICA, 2001, 106 (04) :443-459
[10]  
Bruinier JH, 2002, LECT NOTES MATH, V1780, P1