ON THE ACCURACY OF FINITE ELEMENT APPROXIMATIONS TO A CLASS OF INTERFACE PROBLEMS

被引:30
作者
Guzman, Johnny [1 ]
Sanchez, Manuel A. [1 ]
Sarkis, Marcus [2 ]
机构
[1] Brown Univ, Div Appl Math, Providence, RI 02912 USA
[2] Worcester Polytech Inst, Dept Math Sci, 100 Inst Rd, Worcester, MA 01609 USA
基金
美国国家科学基金会;
关键词
Interface problems; finite elements; pointwise estimates; IMMERSED BOUNDARY METHOD; IRREGULAR REGIONS; BIHARMONIC-EQUATIONS; CONVERGENCE; FORMULATION; POISSONS; FLOW;
D O I
10.1090/mcom3051
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We define piecewise linear and continuous finite element methods for a class of interface problems in two dimensions. Correction terms are added to the right-hand side of the natural method to render it second-order accurate. We prove that the method is second-order accurate on general quasi-uniform meshes at the nodal points. Finally, we show that the natural method, although non-optimal near the interface, is optimal for points O(root h log(1/h)) away from the interface.
引用
收藏
页码:2071 / 2098
页数:28
相关论文
共 32 条
[1]  
Adjerid S, 2014, INT J NUMER ANAL MOD, V11, P541
[2]   A robust Nitsche's formulation for interface problems [J].
Annavarapu, Chandrasekhar ;
Hautefeuille, Martin ;
Dolbow, John E. .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2012, 225 :44-54
[3]  
[Anonymous], 1977, MATH ASPECTS FINITE
[4]  
Beale J, 2007, Commun. Appl. Math. Comput. Sci., V1, P91, DOI [10.2140/camcos.2006.1.91, DOI 10.2140/CAMCOS.2006.1.91]
[5]   A second order virtual node method for elliptic problems with interfaces and irregular domains [J].
Bedrossian, Jacob ;
von Brecht, James H. ;
Zhu, Siwei ;
Sifakis, Eftychios ;
Teran, Joseph M. .
JOURNAL OF COMPUTATIONAL PHYSICS, 2010, 229 (18) :6405-6426
[6]   A finite element approach for the immersed boundary method [J].
Boffi, D ;
Gastaldi, L .
COMPUTERS & STRUCTURES, 2003, 81 (8-11) :491-501
[7]  
Brenner S. C., 1994, TEXTS APPL MATH, V15
[8]   Projection Stabilization of Lagrange Multipliers for the Imposition of Constraints on Interfaces and Boundaries [J].
Burman, Erik .
NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2014, 30 (02) :567-592
[9]   Numerical Approximation of Large Contrast Problems with the Unfitted Nitsche Method [J].
Burman, Erik ;
Zunino, Paolo .
FRONTIERS IN NUMERICAL ANALYSIS - DURHAM 2010, 2012, 85 :224-279
[10]   Fictitious domain finite element methods using cut elements: II. A stabilized Nitsche method [J].
Burman, Erik ;
Hansbo, Peter .
APPLIED NUMERICAL MATHEMATICS, 2012, 62 (04) :328-341