A functional error analysis of differential optical flow methods

被引:4
作者
Kumashiro, Keishi [1 ]
Steinberg, Adam M. [2 ]
Yano, Masayuki [1 ]
机构
[1] Univ Toronto, Inst Aerosp Studies, Toronto, ON M3H 5T6, Canada
[2] Georgia Inst Technol, Daniel Guggenheim Sch Aerosp Engn, Atlanta, GA 30332 USA
基金
加拿大创新基金会;
关键词
PARTICLE IMAGE VELOCIMETRY; CONFIDENCE MEASURE; DENSE ESTIMATION; FLUID-FLOW; COMPUTATION; PIV; TURBULENCE; DYNAMICS; MODELS;
D O I
10.1007/s00348-021-03244-1
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
We analyze the sources of error in differential optical flow methods using techniques for the analysis of partial differential equations. We first derive an a priori error bound for the estimated optical flow field. We then systematically interpret this error bound and show that the estimation error is primarily bounded by the best-fit approximation error-which quantifies the fidelity with which one can represent the true optical flow field by a chosen or learned set of basis functions-divided by a stability constant-which quantifies one's ability to infer the optical flow field given the information content of the acquired data. We also show that the estimation error is bounded by effects associated with the finite temporal and spatial resolution of the acquired data. In particular, we show that the main finite resolution effects are related to the finite differencing and time averaging of the measured intensity fields. Finally, we demonstrate the error bound numerically using synthetic three-dimensional data sets based on direct numerical simulations of homogeneous isotropic turbulence and transitional boundary layer flow provided by Johns Hopkins University (Li et al. in J Turbul 9:N31, 2008; Zaki in Flow Turbul Combust in 91(3):451-473, 2013). [GRAPHICS] .
引用
收藏
页数:17
相关论文
共 68 条
  • [1] A new energy-based method for 3D motion estimation of incompressible PIV flows
    Alvarez, L.
    Castano, C. A.
    Garcia, M.
    Krissian, K.
    Mazorra, L.
    Salgado, A.
    Sanchez, J.
    [J]. COMPUTER VISION AND IMAGE UNDERSTANDING, 2009, 113 (07) : 802 - 810
  • [2] [Anonymous], 2007, P 2007 ACM IEEE C SU
  • [3] Mathematical study of the relaxed optical flow problem in the space BV (Ω)
    Aubert, G
    Kornprobst, P
    [J]. SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1999, 30 (06) : 1282 - 1308
  • [4] Computing optical flow via variational techniques
    Aubert, G
    Deriche, R
    Kornprobst, P
    [J]. SIAM JOURNAL ON APPLIED MATHEMATICS, 1999, 60 (01) : 156 - 182
  • [5] PERFORMANCE OF OPTICAL-FLOW TECHNIQUES
    BARRON, JL
    FLEET, DJ
    BEAUCHEMIN, SS
    [J]. INTERNATIONAL JOURNAL OF COMPUTER VISION, 1994, 12 (01) : 43 - 77
  • [6] The computation of optical flow
    Beauchemin, SS
    Barron, JL
    [J]. ACM COMPUTING SURVEYS, 1995, 27 (03) : 433 - 467
  • [7] Béréziat D, 2000, PROC CVPR IEEE, P487, DOI 10.1109/CVPR.2000.854890
  • [8] A 3-FRAME ALGORITHM FOR ESTIMATING 2-COMPONENT IMAGE MOTION
    BERGEN, JR
    BURT, PJ
    HINGORANI, R
    PELEG, S
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1992, 14 (09) : 886 - 896
  • [9] Brenner SC., 2008, The Mathematical Theory of Finite Element Methods, V3, DOI [10.1007/978-0-387-75934-0, DOI 10.1007/978-0-387-75934-0]
  • [10] High accuracy optical flow estimation based on a theory for warping
    Brox, T
    Bruhn, A
    Papenberg, N
    Weickert, J
    [J]. COMPUTER VISION - ECCV 2004, PT 4, 2004, 2034 : 25 - 36