On Lipschitz-like continuity of a class of set-valued mappings

被引:8
作者
Bednarczuk, E. M. [1 ,2 ]
Minchenko, L., I [3 ]
Rutkowski, K. E. [2 ,4 ]
机构
[1] Warsaw Univ Technol, Fac Math & Informat Sci, Warsaw, Poland
[2] Polish Acad Sci, Syst Res Inst, Warsaw, Poland
[3] Belarus State Univ Informat & Radioelect, Dept Informat, Minsk, BELARUS
[4] Cardinal Stefan Wyszynski Univ, Sch Exact Sci, Fac Math & Nat Sci, Warsaw, Poland
关键词
Set-valued mappings; parametric optimization; relaxed constant rank constraint qualification; R-regularity; pseudo-Lipschitz continuity; Lipschitz-like continuity; Aubin property; STABILITY; SYSTEMS;
D O I
10.1080/02331934.2019.1696339
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We study set-valued mappings defined by solution sets of parametric systems of equalities and inequalities. We prove Lipschitz-like continuity of these mappings under relaxed constant rank constraint qualification.
引用
收藏
页码:2535 / 2549
页数:15
相关论文
共 31 条
[1]  
[Anonymous], 1984, MATH PROGRAMMING STU
[2]  
[Anonymous], 1998, FUNDAMENTAL PRINCIPL
[3]   LIPSCHITZ BEHAVIOR OF SOLUTIONS TO CONVEX MINIMIZATION PROBLEMS [J].
AUBIN, JP .
MATHEMATICS OF OPERATIONS RESEARCH, 1984, 9 (01) :87-111
[4]   ON LIPSCHITZ-LIKE PROPERTY FOR POLYHEDRAL MOVING SETS [J].
Bednarczuk, E. ;
Rutkowski, K. .
SIAM JOURNAL ON OPTIMIZATION, 2019, 29 (04) :2504-2516
[5]  
Bednarczuk EM, 2019, ARXIV190505581V2
[6]  
BONNANS J. F., 2000, Perturbation Analysis of Optimization Problems
[7]   STABILITY AND REGULAR POINTS OF INEQUALITY SYSTEMS [J].
BORWEIN, JM .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1986, 48 (01) :9-52
[8]  
Clarke FH, 1983, OPTIMIZATION NONSMOO
[9]  
DEMPE S., 2002, NONCON OPTIM ITS APP, V61
[10]   Metric regularity and systems of generalized equations [J].
Dmitruk, Andrei V. ;
Kruger, Alexander Y. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 342 (02) :864-873