Small strain elasto-plastic multiphase-field model

被引:42
作者
Schneider, Daniel [1 ]
Schmid, Stefan [1 ]
Selzer, Michael [1 ,2 ]
Boehlke, Thomas [3 ]
Nestler, Britta [1 ,2 ]
机构
[1] Karlsruhe Univ Appl Sci, Inst Mat & Proc, D-76133 Karlsruhe, Germany
[2] Karlsruhe Inst Technol, Inst Appl Mat, D-76131 Karlsruhe, Germany
[3] Karlsruhe Inst Technol, Inst Engn Mech, Chair Continuum Mech, D-76131 Karlsruhe, Germany
关键词
Phase-field; Multiphase-field; Elasto-plasticity; Crack propagation; PHASE; PLASTICITY; HOMOGENIZATION; TRANSFORMATION;
D O I
10.1007/s00466-014-1080-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A small strain plasticity model, based on the principles of continuum mechanics, is incorporated into a phase-field model for heterogeneous microstructures in polycrystalline and multiphase material systems (Nestler et al., Phys Rev 71:1-6, 2005). Thereby, the displacement field is computed by solving the local momentum balance dynamically (Spatschek et al., Phys Rev 75:1-14, 2007) using the finite difference method on a staggered grid. The elastic contribution is expressed as the linear approximation according to the Cauchy stress tensor. In order to calculate the plastic strain, the Prandtl-Reuss model is implemented consisting of an associated flow rule in combination with the von Mises yield criterion and a linear isotropic hardening approximation. Simulations are performed illustrating the evolution of the stress and plastic strain using a radial return mapping algorithm for single phase system and two phase microstructures. As an example for interface evolution coupling with elasto-plastic effects, we present crack propagation simulations in ductile material.
引用
收藏
页码:27 / 35
页数:9
相关论文
共 19 条
[1]   Combining phase field approach and homogenization methods for modelling phase transformation in elastoplastic media [J].
Ammar, Kais ;
Appolaire, Benoit ;
Cailletaud, Georges ;
Forest, Samuel .
EUROPEAN JOURNAL OF COMPUTATIONAL MECHANICS, 2009, 18 (5-6) :485-523
[2]   Virtual dilatometer curves and effective Young's modulus of a 3D multiphase structure calculated by the phase-field method [J].
Apel, M. ;
Benke, S. ;
Steinbach, I. .
COMPUTATIONAL MATERIALS SCIENCE, 2009, 45 (03) :589-592
[3]  
Bauschinger J., 1886, Uber die Veranderung der Elastizitatsgrenze und die Festigkeit des Eisens und Stahls durch Strecken und Quetschen, durch Erwarmen und Abkuhlen und durch oftmals wiederholte Beanspruchungen About the change in the elastic limit and the strength of iron and steel through stretching and crushing, through heating and cooling and through often repeated stresses. Communication
[4]   Phase-field models for microstructure evolution [J].
Chen, LQ .
ANNUAL REVIEW OF MATERIALS RESEARCH, 2002, 32 :113-140
[5]  
Eshelby D., 1957, Proc. R. Soc., VA241, P376, DOI DOI 10.1098/RSPA.1957.0133
[6]   Plasticity, internal structure and phase field model [J].
Fabrizio, Mauro .
MECHANICS RESEARCH COMMUNICATIONS, 2012, 43 :29-33
[7]  
Gross D, 2011, Bruchmechanik: Mit Einer Einfuhrung in Die Mikromechanik, Vfifth
[8]   Elastoplastic phase field model for microstructure evolution [J].
Guo, XH ;
Shi, SQ ;
Ma, XQ .
APPLIED PHYSICS LETTERS, 2005, 87 (22) :1-3
[9]   Multicomponent alloy solidification: Phase-field modeling and simulations [J].
Nestler, B ;
Garcke, H ;
Stinner, B .
PHYSICAL REVIEW E, 2005, 71 (04)
[10]  
Nestler B, 2008, ALUMINIUM ALLOY, P1251