A high-throughput microfluidic bilayer co-culture platform to study endothelial-pericyte interactions

被引:29
作者
Rogers, Miles T. [1 ,3 ]
Gard, Ashley L. [1 ]
Gaibler, Robert [1 ]
Mulhern, Thomas J. [1 ]
Strelnikov, Rivka [1 ,4 ]
Azizgolshani, Hesham [1 ]
Cain, Brian P. [1 ]
Isenberg, Brett C. [1 ]
Haroutunian, Nerses J. [1 ]
Raustad, Nicole E. [1 ,5 ]
Keegan, Philip M. [1 ,6 ]
Lech, Matthew P. [2 ]
Tomlinson, Lindsay [2 ]
Borenstein, Jeffrey T. [1 ]
Charest, Joseph L. [1 ]
Williams, Corin [1 ]
机构
[1] Charles Stark Draper Lab Inc, 555 Technol Sq, Cambridge, MA 02139 USA
[2] Pfizer Inc, 1 Portland St, Cambridge, MA 02139 USA
[3] Raytheon BBN Technol, Synthet Biol, 10 Moulton St, Cambridge, MA 02138 USA
[4] Microsoft Corp, 1 Mem Dr, Cambridge, MA 02142 USA
[5] Northeastern Univ, Dept Biol, 360 Huntington Ave, Boston, MA 02115 USA
[6] Univ Wisconsin, Dept Biomed Engn, 1550 Engn Dr, Madison, WI 53706 USA
关键词
NITRIC-OXIDE SYNTHASE; SHEAR-STRESS; VASCULAR-PERMEABILITY; BARRIER; EXPRESSION; CELLS; MODEL; VEGF;
D O I
10.1038/s41598-021-90833-z
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Microphysiological organ-on-chip models offer the potential to improve the prediction of drug safety and efficacy through recapitulation of human physiological responses. The importance of including multiple cell types within tissue models has been well documented. However, the study of cell interactions in vitro can be limited by complexity of the tissue model and throughput of current culture systems. Here, we describe the development of a co-culture microvascular model and relevant assays in a high-throughput thermoplastic organ-on-chip platform, PREDICT96. The system consists of 96 arrayed bilayer microfluidic devices containing retinal microvascular endothelial cells and pericytes cultured on opposing sides of a microporous membrane. Compatibility of the PREDICT96 platform with a variety of quantifiable and scalable assays, including macromolecular permeability, image-based screening, Luminex, and qPCR, is demonstrated. In addition, the bilayer design of the devices allows for channel- or cell type-specific readouts, such as cytokine profiles and gene expression. The microvascular model was responsive to perturbations including barrier disruption, inflammatory stimulation, and fluid shear stress, and our results corroborated the improved robustness of co-culture over endothelial mono-cultures. We anticipate the PREDICT96 platform and adapted assays will be suitable for other complex tissues, including applications to disease models and drug discovery.
引用
收藏
页数:14
相关论文
共 45 条
[1]   Tumor necrosis factor-α induces fractalkine expression preferentially in arterial endothelial cells and mithramycin A suppresses TNF-α-induced fractalkine expression [J].
Ahn, SY ;
Cho, CH ;
Park, KY ;
Lee, HJ ;
Lee, S ;
Park, SK ;
Lee, IK ;
Koh, GY .
AMERICAN JOURNAL OF PATHOLOGY, 2004, 164 (05) :1663-1672
[2]   Endothelial Cell Heterogeneity [J].
Aird, William C. .
COLD SPRING HARBOR PERSPECTIVES IN MEDICINE, 2012, 2 (01)
[3]   Pericytes: Developmental, Physiological, and Pathological Perspectives, Problems, and Promises [J].
Armulik, Annika ;
Genove, Guillem ;
Betsholtz, Christer .
DEVELOPMENTAL CELL, 2011, 21 (02) :193-215
[4]   High-throughput organ-on-chip platform with integrated programmable fluid flow and real-time sensing for complex tissue models in drug development workflows† [J].
Azizgolshani, H. ;
Coppeta, J. R. ;
Vedula, E. M. ;
Marr, E. E. ;
Cain, B. P. ;
Luu, R. J. ;
Lech, M. P. ;
Kann, S. H. ;
Mulhern, T. J. ;
Tandon, V. ;
Tan, K. ;
Haroutunian, N. J. ;
Keegan, P. ;
Rogers, M. ;
Gard, A. L. ;
Baldwin, K. B. ;
de Souza, J. C. ;
Hoefler, B. C. ;
Bale, S. S. ;
Kratchman, L. B. ;
Zorn, A. ;
Patterson, A. ;
Kim, E. S. ;
Petrie, T. A. ;
Wiellette, E. L. ;
Williams, C. ;
Isenberg, B. C. ;
Charest, J. L. .
LAB ON A CHIP, 2021, 21 (08) :1454-1474
[5]   Endothelial fluid shear stress sensing in vasculr health and disease [J].
Baeyens, Nicolas ;
Bandyopadhyay, Chirosree ;
Coon, Brian G. ;
Yun, Sanguk ;
Schwartz, Martin A. .
JOURNAL OF CLINICAL INVESTIGATION, 2016, 126 (03) :821-828
[6]   A thermoplastic microfluidic microphysiological system to recapitulate hepatic function and multicellular interactions [J].
Bale, Shyam Sundhar ;
Manoppo, Andrea ;
Thompson, Rebecca ;
Markoski, Alex ;
Coppeta, Jonathan ;
Cain, Brian ;
Haroutunian, Nerses ;
Newlin, Veronica ;
Spencer, Abbie ;
Azizgolshani, Hesham ;
Lu, Mingjian ;
Gosset, James ;
Keegan, Philip ;
Charest, Joseph L. .
BIOTECHNOLOGY AND BIOENGINEERING, 2019, 116 (12) :3409-3420
[7]   Organs-on-chips: research and commercial perspectives [J].
Balijepalli, Aarathi ;
Sivaramakrishan, Vaibhav .
DRUG DISCOVERY TODAY, 2017, 22 (02) :397-403
[8]  
Belizario JE., 2009, OPEN IMMUNOLOGY J, V2, P79, DOI DOI 10.2174/1874226200902010079
[9]   3D self-organized microvascular model of the human blood-brain barrier with endothelial cells, pericytes and astrocytes [J].
Campisi, Marco ;
Shin, Yoojin ;
Osaki, Tatsuya ;
Hajal, Cynthia ;
Chiono, Valeria ;
Kamm, Roger D. .
BIOMATERIALS, 2018, 180 :117-129
[10]   Endothelial Barrier and Its Abnormalities in Cardiovascular Disease [J].
Chistiakov, Dimitry A. ;
Orekhov, Alexander N. ;
Bobryshev, Yuri V. .
FRONTIERS IN PHYSIOLOGY, 2015, 6