On the diameter of the compressed zero-divisor graph

被引:6
作者
Hashemi, E. [1 ]
Abdi, M. [1 ]
Alhevaz, A. [1 ]
机构
[1] Shahrood Univ Technol, Dept Math, POB 316-3619995161, Shahrood, Iran
关键词
Compressed zero-divisor graph; Noetherian rings; Polynomial rings; power series rings; zero-divisor graph; COMMUTATIVE RING; IDEALS; SERIES;
D O I
10.1080/00927872.2017.1284227
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let R be acommutativeringwithnonzeroidentity. Therelationon R givenby a similar to b if andonlyif annR(a) = annR(b) is anequivalencerelation. Thecompressedzero- divisorgraph WE(R) of R is the(undirected) graphwithvertices the equivalenceclassesinducedby similar to other than [0](R) and [1](R), anddistinct vertices [a](R) and [b](R) areadjacentifandonlyif ab = 0. Thedistancebetween vertices [a](R) and [b](R) (not necessarilydistinctfrom a) isthelengthofthe shortestpathconnectingthem, andthediameterofthegraph, diam(inverted right prependiculr (E)(R)), is thesupofthesedistances. Inthispaper, wecontinuestudyofthediameter of thecompressedzero-divisorgraph inverted right prependiculr(E)(R). Acompletecharacterizationfor the possiblediametersof inverted right prependiculr(E)(R) is givenexclusivelyintermsoftheideals of R. Alsowegiveacompletecharacterizationforthepossiblediameters of inverted right prependiculr(E)(R[x]) in terms of the diameters of inverted right prependiculr(E)(R). Forareducedring R with nonzerozero-divisors, itisshownthat1 <= diam(inverted right prependiculr (E)(R)) = diam(inverted right prependiculr(E)(R[x])) <= diam(inverted right prependiculr (E)(R[[x]])) <= 3.
引用
收藏
页码:4855 / 4864
页数:10
相关论文
共 27 条
[1]   On the zero-divisor graph of a commutative ring [J].
Akbari, S ;
Mohammadian, A .
JOURNAL OF ALGEBRA, 2004, 274 (02) :847-855
[2]   When a zero-divisor graph is planar or a complete r-partite graph [J].
Akbari, S ;
Maimani, HR ;
Yassemi, S .
JOURNAL OF ALGEBRA, 2003, 270 (01) :169-180
[3]   ON ZERO-DIVISORS IN SKEW INVERSE LAURENT SERIES OVER NONCOMMUTATIVE RINGS [J].
Alhevaz, A. ;
Kiani, D. .
COMMUNICATIONS IN ALGEBRA, 2014, 42 (02) :469-487
[4]   MCCOY PROPERTY OF SKEW LAURENT POLYNOMIALS AND POWER SERIES RINGS [J].
Alhevaz, A. ;
Kiani, D. .
JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2014, 13 (02)
[5]   On the diameter and girth of a zero-divisor graph [J].
Anderson, David F. ;
Mulay, S. B. .
JOURNAL OF PURE AND APPLIED ALGEBRA, 2007, 210 (02) :543-550
[6]   Some remarks on the compressed zero-divisor graph [J].
Anderson, David F. ;
LaGrange, John D. .
JOURNAL OF ALGEBRA, 2016, 447 :297-321
[7]   THE SEMILATTICE OF ANNIHILATOR CLASSES IN A REDUCED COMMUTATIVE RING [J].
Anderson, David F. ;
LaGrange, John D. .
COMMUNICATIONS IN ALGEBRA, 2015, 43 (01) :29-42
[8]   Abian's poset and the ordered monoid of annihilator classes in a reduced commutative ring [J].
Anderson, David F. ;
LaGrange, John D. .
JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2014, 13 (08)
[9]   Commutative Boolean monoids, reduced rings, and the compressed zero-divisor graph [J].
Anderson, David F. ;
LaGrange, John D. .
JOURNAL OF PURE AND APPLIED ALGEBRA, 2012, 216 (07) :1626-1636
[10]   The zero-divisor graph of a commutative ring [J].
Anderson, DF ;
Livingston, PS .
JOURNAL OF ALGEBRA, 1999, 217 (02) :434-447