Supervised Machine Learning-Based Classification of Li-S Battery Electrolytes

被引:15
作者
Jeschke, Steffen [1 ]
Johansson, Patrik [1 ,2 ]
机构
[1] Chalmers Univ Technol, Dept Phys, S-41296 Gothenburg, Sweden
[2] CNRS, FR 3104, Alistore ERI European Res Inst, Hub Energie 15 Rue Baudelocque, F-80039 Amiens, France
关键词
electrolyte design; lithium-sulfur batteries; solubility; polysulfide; supervised machine learning; SOLVATE IONIC LIQUID; COSMO-RS; SULFUR; ENERGY; STABILITY; APPROXIMATION; GLYME;
D O I
10.1002/batt.202100031
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Machine learning (ML) approaches have the potential to create a paradigm shift in science, especially for multi-variable problems at different levels. Modern battery R&D is an area intrinsically dependent on proper understanding of many different molecular level phenomena and processes alongside evaluation of application level performance: energy, power, efficiency, life-length, etc. One very promising battery technology is Li-S batteries, but the polysulfide solubility in the electrolyte must be managed. Today, many different electrolyte compositions and concepts are evaluated, but often in a more or less trial-and-error fashion. Herein, we show how supervised ML can be applied to accurately classify different Li-S battery electrolytes a priori based on predicting polysulfide solubility. The developed framework is a combined density functional theory (DFT) and statistical mechanics (COSMO-RS) based quantitative structure-property relationship (QSPR) model which easily can be extended to other battery technologies and electrolyte properties.
引用
收藏
页码:1156 / 1162
页数:7
相关论文
共 50 条
[21]   Fibrous Materials for Flexible Li-S Battery [J].
Gao, Yuan ;
Guo, Qianyi ;
Zhang, Qiang ;
Cui, Yi ;
Zheng, Zijian .
ADVANCED ENERGY MATERIALS, 2021, 11 (15)
[22]   A review on solid-state electrolytes for Li-S batteries: Encompassing background to recent advancements [J].
Shalini, V. J. Asha ;
Johnsi, M. ;
Azhagulakshmi, M. ;
Dhivya, S. ;
Balasubramanian, N. .
MATERIALS RESEARCH BULLETIN, 2025, 184
[23]   A supervised machine learning-based framework for deanonymisation of Blockchain transactions [J].
Saxena, Rohit ;
Arora, Deepak ;
Nagar, Vishal .
INTERNATIONAL JOURNAL OF ELECTRONIC SECURITY AND DIGITAL FORENSICS, 2025, 17 (04)
[24]   Akin solid-solid biphasic conversion of a Li-S battery achieved by coordinated carbonate electrolytes [J].
Huang, Feifei ;
Gao, Lujie ;
Zou, Yiping ;
Ma, Guoqiang ;
Zhang, Junjie ;
Xu, Shiqing ;
Li, ZhuXin ;
Liang, Xiao .
JOURNAL OF MATERIALS CHEMISTRY A, 2019, 7 (20) :12498-12506
[25]   Electrochemical Reactivation of Dead Li2S for Li-S Batteries in Non-Solvating Electrolytes [J].
Qi, Xiaoqun ;
Yang, Fengyi ;
Sang, Pengfei ;
Zhu, Zhenglu ;
Jin, Xiaoyu ;
Pan, Yujun ;
Ji, Jie ;
Jiang, Ruining ;
Du, Haoran ;
Ji, Yongsheng ;
Fu, Yongzhu ;
Qie, Long ;
Huang, Yunhui .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2023, 62 (09)
[26]   Synergy of palygorskite supported polyaniline and MoS2 for improvement of Li-S Battery performance [J].
Jiang, Zhiyi ;
Yan, Chenyu ;
Zhang, Qiang ;
Yang, Caihong ;
Sarwar, Muhammad Tariq ;
Tang, Aidong ;
Yang, Huaming .
APPLIED CLAY SCIENCE, 2023, 233
[27]   Sulfur/microporous carbon composites for Li-S battery [J].
Li, Guochun ;
Jing, Hangkun ;
Li, Huanhuan ;
Liu, Liang ;
Wang, Yaping ;
Yuan, Chaochun ;
Jiang, Haobin ;
Chen, Long .
IONICS, 2015, 21 (08) :2161-2170
[28]   Perspectives on manufacturing simulations of Li-S battery cathodes [J].
Arcelus, Oier ;
Franco, Alejandro A. .
JOURNAL OF PHYSICS-ENERGY, 2022, 4 (01)
[29]   Toward Rigorous Validation of Li-S Battery Models [J].
Cornish, M. ;
Marinescu, M. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2022, 169 (06)
[30]   Understanding the Impact of a Nonafluorinated Ether-Based Electrolyte on Li-S Battery [J].
Cao, Jiayu ;
Tornheim, Adam ;
Glossmann, Tobias ;
Hintennach, Andreas ;
Rojas, Tomas ;
Meisner, Quinton ;
Sahore, Ritu ;
Liu, Qian ;
Wang, Yan ;
Ngo, Anh ;
Curtiss, Larry A. ;
Zhang, Zhengcheng .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2019, 166 (15) :A3653-A3659