Intersective sets and diophantine approximation

被引:15
作者
Bugeaud, Y [1 ]
机构
[1] Univ Strasbourg 1, UFR Math, F-67084 Strasbourg, France
关键词
D O I
10.1307/mmj/1100623419
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
[No abstract available]
引用
收藏
页码:667 / 682
页数:16
相关论文
共 21 条
[1]  
BAKER A, 1970, P LOND MATH SOC, V21, P1
[2]   Sets of exact 'logarithmic' order in the theory of Diophantine approximation [J].
Beresnevich, V ;
Dickinson, D ;
Velani, S .
MATHEMATISCHE ANNALEN, 2001, 321 (02) :253-273
[3]  
Beresnevich V, 1999, ACTA ARITH, V90, P97
[4]  
BERESNEVICH V, MEASURE THEORETIC LA
[5]  
BERESNEVICH V, 2000, MAT NAVUK, V1, P35
[6]  
Beresnevich VV, 2002, PANORAMA IN NUMBER THEORY OR THE VIEW FROM BAKER'S GARDEN, P260
[7]   An inhomogeneous Jarnik theorem [J].
Bugeaud, Y .
JOURNAL D ANALYSE MATHEMATIQUE, 2004, 92 (1) :327-349
[8]   Approximation by algebraic integers and Hausdorff dimension [J].
Bugeaud, Y .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2002, 65 :547-559
[9]   Approximation by algebraic numbers of fixed degree and Ausdorf dimension [J].
Bugeaud, Y .
JOURNAL OF NUMBER THEORY, 2002, 96 (01) :174-200
[10]  
BUGEAUD Y, IN PRESS CAMBRIDGE T