Asymptotic behavior of the stochastic Kelvin-Voigt-Brinkman-Forchheimer equations

被引:3
作者
Cung The Anh [1 ]
Nguyen Van Thanh [2 ]
机构
[1] Hanoi Natl Univ Educ, Dept Math, 136 Xuan Thuy, Hanoi, Vietnam
[2] Hanoi Natl Univ, Univ Languages & Int Studies, Foreign Languages Specialized Sch, Hanoi, Vietnam
关键词
Stochastic Kelvin-Voigt-Brinkman-Forchheimer equations; white noise; stability; stabilizability; EVOLUTION EQUATIONS; UNBOUNDED-DOMAINS; NOISE; STABILIZATION; ATTRACTORS; STABILITY; DESTABILIZATION;
D O I
10.1080/07362994.2016.1149775
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The aim of this article is to study the exponential behavior and stabilizability of the following stochastic three-dimensional Kelvin-Voigt-Brinkman-Forchheimer equations du + [-nu Delta u - alpha(2)Delta u(t) + (u . del)u + f(x, u) + del p]dt = g(x)dt + h(t, u)dW(t) in an arbitrary (bounded or unbounded) domain satisfying the Poincare inequality.
引用
收藏
页码:441 / 455
页数:15
相关论文
共 25 条
[1]  
[Anonymous], 1998, RANDOM DYNAMICAL SYS, DOI DOI 10.1007/978-3-662-12878-7
[2]  
ARNOLD L, 1983, SIAM J CONTROL OPTIM, V21, P451, DOI 10.1137/0321027
[3]   Random attractors for stochastic 2D-Navier-Stokes equations in some unbounded domains [J].
Brzezniak, Z. ;
Caraballo, T. ;
Langa, J. A. ;
Li, Y. ;
Lukaszewicz, G. ;
Real, J. .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2013, 255 (11) :3897-3919
[4]  
Caraballo T, 2000, DISCRET CONTIN DYN S, V6, P875
[5]   The asymptotic behaviour of a stochastic 3D LANS-α model [J].
Caraballo, T ;
Márquez-Durán, AM ;
Real, J .
APPLIED MATHEMATICS AND OPTIMIZATION, 2006, 53 (02) :141-161
[6]   On the existence and uniqueness of solutions to stochastic three-dimensional Lagrangian averaged Navier-Stokes equations [J].
Caraballo, T ;
Real, J ;
Taniguchi, T .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2006, 462 (2066) :459-479
[7]   The exponential behaviour and stabilizability of stochastic 2D-Navier-Stokes equations [J].
Caraballo, T ;
Langa, JA ;
Taniguchi, T .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2002, 179 (02) :714-737
[8]   On stabilization of partial differential equations by noise [J].
Caraballo, T ;
Liu, K ;
Mao, X .
NAGOYA MATHEMATICAL JOURNAL, 2001, 161 :155-170
[9]  
Caraballo T., 2010, INTERDISCIPLINARY MA, V8, P43
[10]   The effect of noise on the Chafee-Infante equation: A nonlinear case study [J].
Caraballo, Tomas ;
Crauel, Hans ;
Langa, Jose A. ;
Robinson, James C. .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2007, 135 (02) :373-382