Outer approximation schemes for generalized semi-infinite variational inequality problems

被引:2
作者
Burachik, R. S. [1 ,2 ]
Lopes, J. O. [3 ]
机构
[1] Univ Ballarat, Ctr Informat & Appl Optimizat, Ballarat, Vic 3353, Australia
[2] Univ S Australia, Sch Math & Stat, Adelaide, SA 5001, Australia
[3] Univ Fed Piaui, Dept Matemat, Piaui, Brazil
基金
澳大利亚研究理事会;
关键词
variational inequalities; maximal monotone operators; Banach spaces; outer approximation algorithm; generalized semi-infinite programs; Bregman functions; coercive operators; OPTIMIZATION; POINT; MONOTONE;
D O I
10.1080/02331930801956552
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We introduce and analyse outer approximation schemes for solving variational inequality problems in which the constraint set is as in generalized semi-infinite programming. We call these problems generalized semi-infinite variational inequality problems. First, we establish convergence results of our method under standard boundedness assumptions. Second, we use suitable Tikhonov-like regularizations for establishing convergence in the unbounded case.
引用
收藏
页码:601 / 617
页数:17
相关论文
共 29 条
[1]  
[Anonymous], 1978, Nonlinear mappings of monotone type
[2]  
[Anonymous], PARAMETRIC OPTIMIZAT
[3]  
Aubin J.P., 1990, SET VALUED ANAL, DOI 10.1007/978-0-8176-4848-0
[4]  
Berge C., 1963, Topological Spaces, Including a Treatment of Multi -Valued Functions Vector Spaces and Convexity
[5]   INFINITELY CONSTRAINED OPTIMIZATION PROBLEMS [J].
BLANKENSHIP, JW ;
FALK, JE .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1976, 19 (02) :261-281
[6]  
Browder F. E., 1976, P S PURE MATH, V18, P1
[7]  
BRUCK RE, 1976, B AM MATH SOC, V82, P353
[8]   ITERATIVE SOLUTION OF A VARIATIONAL INEQUALITY FOR CERTAIN MONOTONE OPERATORS IN HILBERT-SPACE [J].
BRUCK, RE .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1975, 81 (05) :890-892
[9]   An outer approximation method for the variational inequality problem [J].
Burachik, RS ;
Lopes, JO ;
Svaiter, BF .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2005, 43 (06) :2071-2088
[10]   A proximal point method for the variational inequality problem in Banach spaces [J].
Burachik, RS ;
Scheimberg, S .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2000, 39 (05) :1633-1649