A FAST DUAL GRADIENT METHOD FOR SEPARABLE CONVEX OPTIMIZATION VIA SMOOTHING

被引:0
作者
Li, Jueyou [1 ]
Wu, Zhiyou [1 ]
Wu, Changzhi [2 ]
Long, Qiang [3 ]
Wang, Xiangyu [2 ]
Lee, Jae-Myung [4 ,5 ,6 ]
Jung, Kwang-Hyo [4 ]
机构
[1] Chongqing Normal Univ, Sch Math Sci, Chongqing 400047, Peoples R China
[2] Curtin Univ, Sch Built Environm, Australasian Joint Res Ctr Bldg Informat Modellin, Perth, WA 6845, Australia
[3] Southwest Univ Sci & Technol, Sch Sci, Mianyang 621010, Sichuan, Peoples R China
[4] Pusan Natl Univ, Dept Naval Architecture & Ocean Engn, Busan, South Korea
[5] Pusan Natl Univ, Integrat Grad Program Ship & Offshore Plant Techn, BK21Plus, Busan, South Korea
[6] Pusan Natl Univ, Cryogen Mat Res Inst, Busan, South Korea
来源
PACIFIC JOURNAL OF OPTIMIZATION | 2016年 / 12卷 / 02期
基金
新加坡国家研究基金会; 澳大利亚研究理事会;
关键词
convex optimization; dual decomposition; smoothing technique; fast gradient method; parallel computation; LAGRANGIAN DECOMPOSITION; NEURAL-NETWORKS; MINIMIZATION; STABILITY;
D O I
暂无
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
This paper considers a class of separable convex optimization problems with linear coupled constraints arising in many applications. Based on a novel smoothing technique, a simple fast dual gradient method is presented to solve this class of problems. Then the convergence of the proposed method is proved and the computational complexity bound of the method for achieving an approximately optimal solution is given explicitly. An improved iteration complexity bound is obtained when the objective function of the problem is strongly convex. Our algorithm is simple and fast, which can be implemented in a parallel fashion. Numerical experiments on a network utility maximization problem are presented to illustrate the effectiveness of the proposed algorithm.
引用
收藏
页码:289 / +
页数:17
相关论文
共 30 条
  • [1] An O(1/k) Gradient Method for Network Resource Allocation Problems
    Beck, Amir
    Nedic, Angelia
    Ozdaglar, Asuman
    Teboulle, Marc
    [J]. IEEE TRANSACTIONS ON CONTROL OF NETWORK SYSTEMS, 2014, 1 (01): : 64 - 73
  • [2] Bertsekas D. P., 1989, PARALLEL DISTRIBUTED, V23
  • [3] A double smoothing technique for solving unconstrained nondifferentiable convex optimization problems
    Bot, Radu Ioan
    Hendrich, Christopher
    [J]. COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2013, 54 (02) : 239 - 262
  • [4] Distributed optimization and statistical learning via the alternating direction method of multipliers
    Boyd S.
    Parikh N.
    Chu E.
    Peleato B.
    Eckstein J.
    [J]. Foundations and Trends in Machine Learning, 2010, 3 (01): : 1 - 122
  • [5] A PROXIMAL-BASED DECOMPOSITION METHOD FOR CONVEX MINIMIZATION PROBLEMS
    CHEN, G
    TEBOULLE, M
    [J]. MATHEMATICAL PROGRAMMING, 1994, 64 (01) : 81 - 101
  • [6] Connejo A., 2006, Decomposition Techniques_in_Mathematical_Programming:_Engineering_and_Science_Applications
  • [7] Multi-agent model predictive control of signaling split in urban traffic networks
    de Oliveira, Lucas Barcelos
    Camponogara, Eduardo
    [J]. TRANSPORTATION RESEARCH PART C-EMERGING TECHNOLOGIES, 2010, 18 (01) : 120 - 139
  • [8] DOUBLE SMOOTHING TECHNIQUE FOR LARGE-SCALE LINEARLY CONSTRAINED CONVEX OPTIMIZATION
    Devolder, Olivier
    Glineur, Francois
    Nesterov, Yurii
    [J]. SIAM JOURNAL ON OPTIMIZATION, 2012, 22 (02) : 702 - 727
  • [9] State estimation distributed processing
    Ebrahimian, R
    Baldick, R
    [J]. IEEE TRANSACTIONS ON POWER SYSTEMS, 2000, 15 (04) : 1240 - 1246
  • [10] Machine Learning Source Separation Using Maximum A Posteriori Nonnegative Matrix Factorization
    Gao, Bin
    Woo, W. L.
    Ling, Bingo W-K.
    [J]. IEEE TRANSACTIONS ON CYBERNETICS, 2014, 44 (07) : 1169 - 1179