Optofluidic Chromatography: Label-Free Sorting of Exosomes with Plasmonic Microlenses

被引:1
作者
Zhu, Xiangchao [1 ]
Cicek, Ahmet [2 ]
Li, Yixiang [1 ]
Yanik, Ahmet Ali [1 ,3 ]
机构
[1] Univ Calif Santa Cruz, Dept Elect & Comp Engn, Santa Cruz, CA 95064 USA
[2] Burdur Mehmet Akif Ersoy Univ, Dept Nanosci & Nanotechnol, TR-15030 Burdur, Turkey
[3] Univ Calif Santa Cruz, Calif Inst Quantitat Biosci QB3, Santa Cruz, CA 95064 USA
来源
OPTICAL TRAPPING AND OPTICAL MICROMANIPULATION XVI | 2019年 / 11083卷
关键词
Optofluidic; Chromatography; Label-Free; Microlens; Exosomes; Plasmonics; Surface Plasmons; Sorting; REFRACTIVE-INDEX; PARTICLES; FORCE; VIRUSES; LIGHT;
D O I
10.1117/12.2529723
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We introduce a subwavelength thick (similar to 200 nm) plasmofluidic microlens that effortlessly achieves objective-free focusing and self-alignment of opposing optical scattering and fluidic drag forces for selective separation of exosome size bioparticles. Our optofluidic microlens provides a self-collimating mechanism for particle trajectories with a spatial dispersion that is inherently minimized by the optical gradient and radial fluidic drag forces. We demonstrate that this facile platform facilitates complete separation of small size bioparticles (i.e., exosomes) from a heterogenous mixture through negative depletion and provides a robust selective separation capability based on differences in chemical composition (refractive index). Unlike existing optical chromatography techniques that require complicated instrumentation (lasers, objectives and precise alignment stages), our platform open up the possibility of multiplexed and high-throughput sorting of nanoparticles on a chip.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] A single-layer, planar, optofluidic Mach-Zehnder interferometer for label-free detection
    Lapsley, Michael Ian
    Chiang, I. -Kao
    Zheng, Yue Bing
    Ding, Xiaoyun
    Mao, Xiaole
    Huang, Tony Jun
    LAB ON A CHIP, 2011, 11 (10) : 1795 - 1800
  • [32] Hydrodynamic and label-free sorting of circulating tumor cells from whole blood
    Geislinger, Thomas M.
    Stamp, Melanie E. M.
    Wixforth, Achim
    Franke, Thomas
    APPLIED PHYSICS LETTERS, 2015, 107 (20)
  • [33] Developments in label-free microfluidic methods for single-cell analysis and sorting
    Carey, Thomas R.
    Cotner, Kristen L.
    Li, Brian
    Sohn, Lydia L.
    WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY, 2019, 11 (01)
  • [34] Hybrid plasmonic label-free multi-analyte refractive index sensor
    Kishore, K. R.
    Singh, Utkarsh
    Ayyanar, N.
    Raja, Thavasi G.
    Sanathanan, M. S.
    OPTOELECTRONICS LETTERS, 2019, 15 (04) : 269 - 272
  • [35] Label-Free Plasmonic Detection of Untethered Nanometer-Sized Brownian Particles
    Baaske, Martin Dieter
    Neu, Peter Sebastian
    Orrit, Michel
    ACS NANO, 2020, 14 (10) : 14212 - 14218
  • [36] Hot Spot-Localized Artificial Antibodies for Label-Free Plasmonic Biosensing
    Abbas, Abdennour
    Tian, Limei
    Morrissey, Jeremiah J.
    Kharasch, Evan D.
    Singamaneni, Srikanth
    ADVANCED FUNCTIONAL MATERIALS, 2013, 23 (14) : 1789 - 1797
  • [37] Enhancing Label-Free Biosensing With Cryogenic Temperature-Induced Plasmonic Structures
    Vagif Nevruzoglu
    Murat Tomakin
    Melih Manir
    Selçuk Demir
    Fatih Şaban Beriş
    Arif E. Cetin
    Plasmonics, 2023, 18 : 2437 - 2445
  • [38] Enhancing Label-Free Biosensing With Cryogenic Temperature-Induced Plasmonic Structures
    Nevruzoglu, Vagif
    Tomakin, Murat
    Manir, Melih
    Demir, Selcuk
    Beris, Fatih Saban
    Cetin, Arif E.
    PLASMONICS, 2023, 18 (06) : 2437 - 2445
  • [39] Label-Free Monitoring of Diffusion in Microfluidics
    Sorensen, Kristian Tolbol
    Kristensen, Anders
    MICROMACHINES, 2017, 8 (11):
  • [40] Label-Free Optical Microscopy Technique and Its Biomedical Applications
    Cao Yitao
    Wang Xue
    Lu Xinchao
    Huang Chengjun
    LASER & OPTOELECTRONICS PROGRESS, 2022, 59 (06)