Clinical feasibility of an abdominal thin-slice breath-hold single-shot fast spin echo sequence processed using a deep learning-based noise-reduction approach

被引:16
作者
Tajima, Taku [1 ,2 ]
Akai, Hiroyuki [3 ]
Yasaka, Koichiro [4 ]
Kunimatsu, Akira [1 ]
Akahane, Masaaki [2 ]
Yoshioka, Naoki [2 ]
Abe, Osamu [4 ]
Ohtomo, Kuni [5 ]
Kiryu, Shigeru [2 ]
机构
[1] Int Univ Hlth & Welf, Mita Hosp, Dept Radiol, 1-4-3 Mita,Minato Ku, Tokyo 1088329, Japan
[2] Int Univ Hlth, Welf Narita Hosp, Dept Radiol, 852 Hatakeda Narita, Chiba 2860124, Japan
[3] Univ Tokyo, Inst Med Sci, Dept Radiol, 4-6-1 Shirokanedai,Minato Ku, Tokyo 1088639, Japan
[4] Univ Tokyo, Grad Sch Med, Dept Radiol, 7-3-1 Hongo,Bunkyo Ku, Tokyo 1130033, Japan
[5] Int Univ Hlth & Welf, 2600-1 kitakanamaru, Otawara, Tochigi 3248501, Japan
关键词
Magnetic resonance imaging; Deep learning; Denoise; Acceleration; Pancreas; Single-shot fast spin echo; MRI; COMPLICATIONS; PANCREATITIS; ABDOMEN;
D O I
10.1016/j.mri.2022.04.005
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Background: T2-weighted imaging (T2WI) is a key sequence of MRI studies of the pancreas. The single-shot fast spin echo (single-shot FSE) sequence is an accelerated form of T2WI. We hypothesized that denoising approach with deep learning-based reconstruction (dDLR) could facilitate accelerated breath-hold thin-slice single-shot FSE MRI, and reveal the pancreatic anatomy in detail. Purpose: To assess the image quality of thin-slice (3 mm) respiratory-triggered FSE T2WI (Resp-FSE) and breath-hold fast advanced spin echo with and without dDLR (BH-dDLR-FASE and BH-FASE, respectively) at 1.5 T. Materials and methods: MR images of 42 prospectively enrolled patients with suspected pancreaticobiliary disease were obtained at 1.5 T. We qualitatively and quantitatively evaluated image quality of BH-dDLR-FASE related to BH-FASE and Resp-FSE. Results: The scan time of BH-FASE was significantly shorter than that of Resp-FSE (30 +/- 4 s and 122 +/- 25 s, p < 0.001). Qualitatively, dDLR significantly improved BH-FASE image quality, and the image quality of BH-dDLR-FASE was significantly better than that of Resp-FSE; as quantitative parameters, the signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) of BH-dDLR-FASE were also significantly better than those of Resp-FSE. The BH-dDLR-FASE sequence covered the entire pancreas and liver and provided overall image quality rated close to excellent. Conclusions: The dDLR technique enables accelerated thin-slice single-shot FSE, and BH-dDLR-FASE seems to be feasible.
引用
收藏
页码:76 / 83
页数:8
相关论文
共 28 条
[1]   Is MRCP necessary to diagnose pancreas divisum? [J].
Bogveradze, Nino ;
Hasse, Felix ;
Mayer, Philipp ;
Rupp, Christian ;
Tjaden, Christin ;
Klauss, Miriam ;
Kauczor, Hans-Ulrich ;
Weber, Tim Frederik .
BMC MEDICAL IMAGING, 2019, 19 (1)
[2]   Fast Abdominal Magnetic Resonance Imaging [J].
Budjan, J. ;
Schoenberg, S. O. ;
Riffel, P. .
ROFO-FORTSCHRITTE AUF DEM GEBIET DER RONTGENSTRAHLEN UND DER BILDGEBENDEN VERFAHREN, 2016, 188 (06) :551-558
[3]   Variable-Density Single-Shot Fast Spin-Echo MRI with Deep Learning Reconstruction by Using Variational Networks [J].
Chen, Feiyu ;
Taviani, Valentina ;
Malkiel, Itzik ;
Cheng, Joseph Y. ;
Tamir, Jonathan I. ;
Shaikh, Jamil ;
Chang, Stephanie T. ;
Hardy, Christopher J. ;
Pauly, John M. ;
Vasanawala, Shreyas S. .
RADIOLOGY, 2018, 289 (02) :366-373
[4]  
Gold G, 2020, DEEP LEARNING RECONS
[5]   Diagnostic Confidence and Feasibility of a Deep Learning Accelerated HASTE Sequence of the Abdomen in a Single Breath-Hold [J].
Herrmann, Judith ;
Gassenmaier, Sebastian ;
Nickel, Dominik ;
Arberet, Simon ;
Afat, Saif ;
Lingg, Andreas ;
Kundel, Matthias ;
Othman, Ahmed E. .
INVESTIGATIVE RADIOLOGY, 2021, 56 (05) :313-319
[6]   MRI of the pancreas: Problem solving tool [J].
Heyn, Chris ;
Sue-Chue-Lam, Derek ;
Jhaveri, Kartik ;
Haider, Masoom A. .
JOURNAL OF MAGNETIC RESONANCE IMAGING, 2012, 36 (05) :1037-1051
[7]  
Jerrolds J., 2009, INTERNET J WORLD HLT, V6
[8]   Investigation of the freely available easy-to-use software 'EZR' for medical statistics [J].
Kanda, Y. .
BONE MARROW TRANSPLANTATION, 2013, 48 (03) :452-458
[9]   Applicability of deep learning-based reconstruction trained by brain and knee 3T MRI to lumbar 1.5T MRI [J].
Kashiwagi, Nobuo ;
Tanaka, Hisashi ;
Yamashita, Yuichi ;
Takahashi, Hiroto ;
Kassai, Yoshimori ;
Fujiwara, Masahiro ;
Tomiyama, Noriyuki .
ACTA RADIOLOGICA OPEN, 2021, 10 (06)
[10]   MRI of pancreatic tumors [J].
Kelekis, NL ;
Semelka, RC .
EUROPEAN RADIOLOGY, 1997, 7 (06) :875-886