Radiomics-based machine learning model for efficiently classifying transcriptome subtypes in glioblastoma patients from MRI

被引:79
作者
Le, Nguyen Quoc Khanh [1 ,2 ,3 ]
Hung, Truong Nguyen Khanh [4 ,5 ]
Do, Duyen Thi [6 ]
Lam, Luu Ho Thanh [4 ,7 ]
Dang, Luong Huu [8 ]
Huynh, Tuan-Tu [9 ,10 ]
机构
[1] Taipei Med Univ, Coll Med, Profess Master Program Artificial Intelligence Me, Taipei 106, Taiwan
[2] Taipei Med Univ, Res Ctr Artificial Intelligence Med, Taipei 106, Taiwan
[3] Taipei Med Univ Hosp, Translat Imaging Res Ctr, Taipei 110, Taiwan
[4] Taipei Med Univ, Coll Med, Int Master PhD Program Med, Taipei 110, Taiwan
[5] Cho Ray Hosp, Orthoped & Trauma Dept, Ho Chi Minh City 70000, Vietnam
[6] Taipei Med Univ, Grad Inst Biomed Informat, Taipei 106, Taiwan
[7] Childrens Hosp 2, Ho Chi Minh City 70000, Vietnam
[8] Univ Med & Pharm Ho Chi Minh City, Dept Otolaryngol, Ho Chi Minh City 70000, Vietnam
[9] Yuan Ze Univ, Dept Elect Engn, 135 Yuandong Rd, Taoyuan 320, Taiwan
[10] Lac Hong Univ, Dept Elect Elect & Mech Engn, 10 Huynh Van Nghe Rd, Bien Hoa 76120, Dong Nai, Vietnam
关键词
Radiogenomics; Glioblastoma; Neuroimaging; Transcriptome subtypes; Radiomics biomarker; XGBoost; Artificial intelligence; Magnetic resonance imaging; MGMT PROMOTER METHYLATION; CLASSIFICATION; GLIOMA; IDH; FEATURES; SYSTEM;
D O I
10.1016/j.compbiomed.2021.104320
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Background: In the field of glioma, transcriptome subtypes have been considered as an important diagnostic and prognostic biomarker that may help improve the treatment efficacy. However, existing identification methods of transcriptome subtypes are limited due to the relatively long detection period, the unattainability of tumor specimens via biopsy or surgery, and the fleeting nature of intralesional heterogeneity. In search of a superior model over previous ones, this study evaluated the efficiency of eXtreme Gradient Boosting (XGBoost)-based radiomics model to classify transcriptome subtypes in glioblastoma patients. Methods: This retrospective study retrieved patients from TCGA-GBM and IvyGAP cohorts with pathologically diagnosed glioblastoma, and separated them into different transcriptome subtypes groups. GBM patients were then segmented into three different regions of MRI: enhancement of the tumor core (ET), non-enhancing portion of the tumor core (NET), and peritumoral edema (ED). We subsequently used handcrafted radiomics features (n = 704) from multimodality MRI and two-level feature selection techniques (Spearman correlation and F-score tests) in order to find the features that could be relevant. Results: After the feature selection approach, we identified 13 radiomics features that were the most meaningful ones that can be used to reach the optimal results. With these features, our XGBoost model reached the predictive accuracies of 70.9%, 73.3%, 88.4%, and 88.4% for classical, mesenchymal, neural, and proneural subtypes, respectively. Our model performance has been improved in comparison with the other models as well as previous works on the same dataset. Conclusion: The use of XGBoost and two-level feature selection analysis (Spearman correlation and F-score) could be expected as a potential combination for classifying transcriptome subtypes with high performance and might raise public attention for further research on radiomics-based GBM models.
引用
收藏
页数:8
相关论文
共 50 条
[1]  
Bakas S., 2016, GLISTRBOOST COMBININ
[2]   Data Descriptor: Advancing The Cancer Genome Atlas glioma MRI collections with expert segmentation labels and radiomic features [J].
Bakas, Spyridon ;
Akbari, Hamed ;
Sotiras, Aristeidis ;
Bilello, Michel ;
Rozycki, Martin ;
Kirby, Justin S. ;
Freymann, John B. ;
Farahani, Keyvan ;
Davatzikos, Christos .
SCIENTIFIC DATA, 2017, 4
[3]   Neuroimaging-Based Classification Algorithm for Predicting 1p/19q-Codeletion Status in IDH-Mutant Lower Grade Gliomas [J].
Batchala, P. P. ;
Muttikkal, T. J. E. ;
Donahue, J. H. ;
Patrie, J. T. ;
Schiff, D. ;
Fadul, C. E. ;
Mrachek, E. K. ;
Lopes, M-B. ;
Jain, R. ;
Patel, S. H. .
AMERICAN JOURNAL OF NEURORADIOLOGY, 2019, 40 (03) :426-432
[4]   The Somatic Genomic Landscape of Glioblastoma [J].
Brennan, Cameron W. ;
Verhaak, Roel G. W. ;
McKenna, Aaron ;
Campos, Benito ;
Noushmehr, Houtan ;
Salama, Sofie R. ;
Zheng, Siyuan ;
Chakravarty, Debyani ;
Sanborn, J. Zachary ;
Berman, Samuel H. ;
Beroukhim, Rameen ;
Bernard, Brady ;
Wu, Chang-Jiun ;
Genovese, Giannicola ;
Shmulevich, Ilya ;
Barnholtz-Sloan, Jill ;
Zou, Lihua ;
Vegesna, Rahulsimham ;
Shukla, Sachet A. ;
Ciriello, Giovanni ;
Yung, W. K. ;
Zhang, Wei ;
Sougnez, Carrie ;
Mikkelsen, Tom ;
Aldape, Kenneth ;
Bigner, Darell D. ;
Van Meir, Erwin G. ;
Prados, Michael ;
Sloan, Andrew ;
Black, Keith L. ;
Eschbacher, Jennifer ;
Finocchiaro, Gaetano ;
Friedman, William ;
Andrews, David W. ;
Guha, Abhijit ;
Iacocca, Mary ;
O'Neill, Brian P. ;
Foltz, Greg ;
Myers, Jerome ;
Weisenberger, Daniel J. ;
Penny, Robert ;
Kucherlapati, Raju ;
Perou, Charles M. ;
Hayes, D. Neil ;
Gibbs, Richard ;
Marra, Marco ;
Mills, Gordon B. ;
Lander, Eric ;
Spellman, Paul ;
Wilson, Richard .
CELL, 2013, 155 (02) :462-477
[5]  
Chen YW, 2006, STUD FUZZ SOFT COMP, V207, P315
[6]   Classification of the glioma grading using radiomics analysis [J].
Cho, Hwan-ho ;
Lee, Seung-hak ;
Kim, Jonghoon ;
Park, Hyunjin .
PEERJ, 2018, 6
[7]  
Christos D, 2018, J MED IMAG, V5, P1
[8]   The Cancer Imaging Archive (TCIA): Maintaining and Operating a Public Information Repository [J].
Clark, Kenneth ;
Vendt, Bruce ;
Smith, Kirk ;
Freymann, John ;
Kirby, Justin ;
Koppel, Paul ;
Moore, Stephen ;
Phillips, Stanley ;
Maffitt, David ;
Pringle, Michael ;
Tarbox, Lawrence ;
Prior, Fred .
JOURNAL OF DIGITAL IMAGING, 2013, 26 (06) :1045-1057
[9]   Using extreme gradient boosting to identify origin of replication in Saccharomyces cerevisiae via hybrid features [J].
Duyen Thi Do ;
Nguyen Quoc Khanh Le .
GENOMICS, 2020, 112 (03) :2445-2451
[10]   Prediction of IDH and TERT promoter mutations in low-grade glioma from magnetic resonance images using a convolutional neural network [J].
Fukuma, Ryohei ;
Yanagisawa, Takufumi ;
Kinoshita, Manabu ;
Shinozaki, Takashi ;
Arita, Hideyuki ;
Kawaguchi, Atsushi ;
Takahashi, Masamichi ;
Narita, Yoshitaka ;
Terakawa, Yuzo ;
Tsuyuguchi, Naohiro ;
Okita, Yoshiko ;
Nonaka, Masahiro ;
Moriuchi, Shusuke ;
Takagaki, Masatoshi ;
Fujimoto, Yasunori ;
Fukai, Junya ;
Izumoto, Shuichi ;
Ishibashi, Kenichi ;
Nakajima, Yoshikazu ;
Shofuda, Tomoko ;
Kanematsu, Daisuke ;
Yoshioka, Ema ;
Kodama, Yoshinori ;
Mano, Masayuki ;
Mori, Kanji ;
Ichimura, Koichi ;
Kanemura, Yonehiro ;
Kishima, Haruhiko .
SCIENTIFIC REPORTS, 2019, 9 (1)