Artificial generation of representative single Li-ion electrode particle architectures from microscopy data

被引:30
作者
Furat, Orkun [1 ]
Petrich, Lukas [1 ]
Finegan, Donal P. [2 ]
Diercks, David [3 ]
Usseglio-Viretta, Francois [2 ]
Smith, Kandler [2 ]
Schmidt, Volker [1 ]
机构
[1] Ulm Univ, Inst Stochast, D-89069 Ulm, Germany
[2] Natl Renewable Energy Lab, Golden, CO 80401 USA
[3] Colorado Sch Mines, Golden, CO 80401 USA
关键词
GAUSSIAN RANDOM-FIELDS; LITHIUM; BATTERIES; MICROSTRUCTURE;
D O I
10.1038/s41524-021-00567-9
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Accurately capturing the architecture of single lithium-ion electrode particles is necessary for understanding their performance limitations and degradation mechanisms through multi-physics modeling. Information is drawn from multimodal microscopy techniques to artificially generate LiNi0.5Mn0.3Co0.2O2 particles with full sub-particle grain detail. Statistical representations of particle architectures are derived from X-ray nano-computed tomography data supporting an 'outer shell' model, and sub-particle grain representations are derived from focused-ion beam electron backscatter diffraction data supporting a 'grain' model. A random field model used to characterize and generate the outer shells, and a random tessellation model used to characterize and generate grain architectures, are combined to form a multi-scale model for the generation of virtual electrode particles with full-grain detail. This work demonstrates the possibility of generating representative single electrode particle architectures for modeling and characterization that can guide synthesis approaches of particle architectures with enhanced performance.
引用
收藏
页数:16
相关论文
共 60 条
  • [1] Pair-copula constructions of multiple dependence
    Aas, Kjersti
    Czado, Claudia
    Frigessi, Arnoldo
    Bakken, Henrik
    [J]. INSURANCE MATHEMATICS & ECONOMICS, 2009, 44 (02) : 182 - 198
  • [2] Abadi M, 2015, 12 USENIX S OPERATIN
  • [3] Abramowitz M, 1968, Handbook of mathematical functions
  • [4] [Anonymous], 2011, RANDOM FIELDS SPHERE
  • [5] [Anonymous], 2013, HDB MONTE CARLO METH
  • [6] Audet C., 2017, DERIVATIVE FREE BLAC, V11, P6330
  • [7] Laser-preparation of geometrically optimised samples for X-ray nano-CT
    Bailey, J. J.
    Heenan, T. M. M.
    Finegan, D. P.
    Lu, X.
    Daemi, S. R.
    Iacoviello, F.
    Backeberg, N. R.
    Taiwo, O. O.
    Brett, D. J. L.
    Atkinson, A.
    Shearing, P. R.
    [J]. JOURNAL OF MICROSCOPY, 2017, 267 (03) : 384 - 396
  • [8] Burger W., 2016, DIGITAL IMAGE PROCES, DOI DOI 10.1007/978-1-4471-6684-9_23
  • [9] Chiu S.N., 2013, Stochastic geometry and its applications
  • [10] Cicek Ozgun, 2016, Medical Image Computing and Computer-Assisted Intervention - MICCAI 2016. 19th International Conference. Proceedings: LNCS 9901, P424, DOI 10.1007/978-3-319-46723-8_49