The twisted mean square and critical zeros of Dirichlet L-functions

被引:9
作者
Wu, Xiaosheng [1 ]
机构
[1] Hefei Univ Technol, Sch Math, Hefei 230009, Anhui, Peoples R China
关键词
Twisted second moment; Kloosterman sum; Simple zeros; Riemann zeta-function; Dirichlet L-function; RIEMANN ZETA-FUNCTION;
D O I
10.1007/s00209-018-2209-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this work, we obtain an asymptotic formula for the twisted mean square of a Dirichlet L-function with a longer mollifier, whose coefficients are also more general than before. As an application we obtain that, for every Dirichlet L-function, more than 41.72% of zeros are on the critical line and more than 40.74% of zeros are simple and on the critical line. These proportions also improve previous results which were proved only for the Riemann zeta-function.
引用
收藏
页码:825 / 865
页数:41
相关论文
共 30 条
[1]  
BALASUBRAMANIAN R, 1985, J REINE ANGEW MATH, V357, P161
[2]   Zeros of Dirichlet L-series on the critical line [J].
Bauer, PJ .
ACTA ARITHMETICA, 2000, 93 (01) :37-52
[3]   Trilinear forms with Kloosterman fractions [J].
Bettin, Sandro ;
Chandee, Vorrapan .
ADVANCES IN MATHEMATICS, 2018, 328 :1234-1262
[4]   The mean square of the product of the Riemann zeta-function with Dirichlet polynomials [J].
Bettin, Sandro ;
Chandee, Vorrapan ;
Radziwill, Maksym .
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2017, 729 :51-79
[5]   THE θ = ∞ CONJECTURE IMPLIES THE RIEMANN HYPOTHESIS [J].
Bettin, Sandro ;
Gonek, Steven M. .
MATHEMATIKA, 2017, 63 (01) :29-33
[6]   More than 41% of the zeros of the zeta function are on the critical line [J].
Bui, H. M. ;
Conrey, Brian ;
Young, Matthew P. .
ACTA ARITHMETICA, 2011, 150 (01) :35-64
[7]  
Bui H.M, ARXIV14102433
[8]   ZEROS OF DERIVATIVES OF RIEMANN ZETA-FUNCTION ON THE CRITICAL LINE [J].
CONREY, B .
JOURNAL OF NUMBER THEORY, 1983, 16 (01) :49-74
[9]  
Conrey J. B., ARXIV11051176
[10]   Critical zeros of Dirichlet L-functions [J].
Conrey, J. Brian ;
Iwaniec, Henryk ;
Soundararajan, Kannan .
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2013, 681 :175-198