Quantum magnetic billiards: boundary conditions and gauge transformations

被引:2
作者
Angelone, Giuliano [1 ]
Facchi, Paolo
Lonigro, Davide
机构
[1] Univ Bari, Dipartimento Fis, I-70126 Bari, Italy
关键词
Quantum billiard; Self-adjoint extension; Quantum boundary condition; Gauge transformation; SELF-ADJOINT EXTENSIONS; SCHRODINGER-OPERATORS; CLASSICAL BILLIARDS; GLOBAL THEORY; LAPLACIAN;
D O I
10.1016/j.aop.2022.168914
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study admissible boundary conditions for a charged quantum particle in a two-dimensional region subjected to an external magnetic field, i.e. a quantum magnetic billiard. After reviewing some physically interesting classes of admissible boundary conditions (magnetic Robin and chiral boundary conditions), we turn our attention to the role of gauge transformations in a magnetic billiard: in particular, we introduce gauge covariant boundary conditions, and find a sufficient condition for gauge covariance which is satisfied by all the aforementioned examples. (c) 2022 Elsevier Inc. All rights reserved.
引用
收藏
页数:15
相关论文
共 45 条
[1]   SIGNIFICANCE OF ELECTROMAGNETIC POTENTIALS IN THE QUANTUM THEORY [J].
AHARONOV, Y ;
BOHM, D .
PHYSICAL REVIEW, 1959, 115 (03) :485-491
[2]   Boundary conditions for bulk and edge states in Quantum Hall systems [J].
Akkermans, E ;
Avron, JE ;
Narevich, R ;
Seiler, R .
EUROPEAN PHYSICAL JOURNAL B, 1998, 1 (01) :117-121
[3]  
Angelone G., 2022, BOUNDARY CONDITIONS
[4]  
[Anonymous], 2012, LONDON MATH SOC LECT, DOI DOI 10.1017/CBO9781139135061.009
[5]  
[Anonymous], 2012, OPERATOR METHODS BOU
[6]  
[Anonymous], 1968, Ann. Scuola Norm. Sup. Pisa
[7]  
[Anonymous], 2012, Non-Homogeneous Boundary Value Problems and Applications, vol. 1, Grundlehren der Mathematischen Wissenschaften
[8]  
[Anonymous], 1996, Mathematical Methods in Quantum Mechanics with Applications to
[9]   Casimir effect and global theory of boundary conditions [J].
Asorey, M. ;
Alvarez, D. Garcia ;
Munoz-Castaneda, J. M. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2006, 39 (21) :6127-6136
[10]   Global theory of quantum boundary conditions and topology change [J].
Asorey, M ;
Ibort, A ;
Marmo, G .
INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2005, 20 (05) :1001-1025