Quantum magnetic billiards: boundary conditions and gauge transformations

被引:2
作者
Angelone, Giuliano [1 ]
Facchi, Paolo
Lonigro, Davide
机构
[1] Univ Bari, Dipartimento Fis, I-70126 Bari, Italy
关键词
Quantum billiard; Self-adjoint extension; Quantum boundary condition; Gauge transformation; SELF-ADJOINT EXTENSIONS; SCHRODINGER-OPERATORS; CLASSICAL BILLIARDS; GLOBAL THEORY; LAPLACIAN;
D O I
10.1016/j.aop.2022.168914
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study admissible boundary conditions for a charged quantum particle in a two-dimensional region subjected to an external magnetic field, i.e. a quantum magnetic billiard. After reviewing some physically interesting classes of admissible boundary conditions (magnetic Robin and chiral boundary conditions), we turn our attention to the role of gauge transformations in a magnetic billiard: in particular, we introduce gauge covariant boundary conditions, and find a sufficient condition for gauge covariance which is satisfied by all the aforementioned examples. (c) 2022 Elsevier Inc. All rights reserved.
引用
收藏
页数:15
相关论文
共 45 条
  • [1] SIGNIFICANCE OF ELECTROMAGNETIC POTENTIALS IN THE QUANTUM THEORY
    AHARONOV, Y
    BOHM, D
    [J]. PHYSICAL REVIEW, 1959, 115 (03): : 485 - 491
  • [2] Boundary conditions for bulk and edge states in Quantum Hall systems
    Akkermans, E
    Avron, JE
    Narevich, R
    Seiler, R
    [J]. EUROPEAN PHYSICAL JOURNAL B, 1998, 1 (01) : 117 - 121
  • [3] Angelone G., 2022, BOUNDARY CONDITIONS
  • [4] [Anonymous], 2012, LONDON MATH SOC LECT, DOI DOI 10.1017/CBO9781139135061.009
  • [5] [Anonymous], 2002, SPRINGER SERIES SOLI
  • [6] Casimir effect and global theory of boundary conditions
    Asorey, M.
    Alvarez, D. Garcia
    Munoz-Castaneda, J. M.
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2006, 39 (21): : 6127 - 6136
  • [7] Global theory of quantum boundary conditions and topology change
    Asorey, M
    Ibort, A
    Marmo, G
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2005, 20 (05): : 1001 - 1025
  • [8] Edge states at phase boundaries and their stability
    Asorey, M.
    Balachandran, A. P.
    Perez-Pardo, J. M.
    [J]. REVIEWS IN MATHEMATICAL PHYSICS, 2016, 28 (09)
  • [9] The topology and geometry of self-adjoint and elliptic boundary conditions for Dirac and Laplace operators
    Asorey, M.
    Ibort, A.
    Marmo, G.
    [J]. INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2015, 12 (06)
  • [10] Boundary effects in bosonic and fermionic field theories
    Asorey, M.
    Garcia-Alvarez, D.
    Munoz-Castaneda, J. M.
    [J]. INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2015, 12 (06)