Adaptive Clustering SOFC Image Segmentation Based on Particle Swarm Optimization

被引:3
作者
Yang, Xuefei [1 ]
Fu, Xiaowei [1 ,2 ]
Li, Xi [3 ]
机构
[1] Wuhan Univ Sci & Technol, Coll Comp Sci & Technol, Key Lab Intelligent Informat Proc & Real Time Ind, Wuhan 430065, Hubei, Peoples R China
[2] Huazhong Univ Sci & Technol, State Key Lab Mat Proc & Die & Mould Technol, Wuhan 430074, Hubei, Peoples R China
[3] Huazhong Univ Sci & Technol, Coll Automat, Wuhan 430074, Hubei, Peoples R China
来源
2019 3RD INTERNATIONAL CONFERENCE ON MACHINE VISION AND INFORMATION TECHNOLOGY (CMVIT 2019) | 2019年 / 1229卷
基金
中国国家自然科学基金;
关键词
FUZZY C-MEANS; OXIDE FUEL-CELLS; LOCAL INFORMATION; MICROSTRUCTURE; ANODE; RECONSTRUCTION;
D O I
10.1088/1742-6596/1229/1/012020
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Microstructural parameters are important for analyzing the chemistry and performance of solid oxide fuel cells (SOFCs). Aiming at the YSZ / Ni anode optical microscopy (OM) image of SOFC, in this paper, particle swarm intelligent optimization algorithm is used to improve the fuzzy C-means clustering algorithm for image segmentation. Particle swarm optimization is used to adaptively search the initial clustering center, helping to avoid local optimization and preserve more image detail. The experimental results show that the proposed method can improve the segmentation accuracy of images. At the same time, it can accurately segment the SOFC three-phase and provide effective image segmentation results for the microstructure parameters.
引用
收藏
页数:7
相关论文
共 16 条
  • [1] Nanomaterials for solid oxide fuel cells: A review
    Abdalla, Abdalla M.
    Hossain, Shahzad
    Azad, Atia T.
    Petra, Pg Mohammad I.
    Begum, Feroza
    Eriksson, Sten G.
    Azad, Abul K.
    [J]. RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2018, 82 : 353 - 368
  • [2] A modified fuzzy C-means algorithm for bias field estimation and segmentation of MRI data
    Ahmed, MN
    Yamany, SM
    Mohamed, N
    Farag, AA
    Moriarty, T
    [J]. IEEE TRANSACTIONS ON MEDICAL IMAGING, 2002, 21 (03) : 193 - 199
  • [3] Alata M, 2008, OPTIMIZING FUZZY C M, V1
  • [4] [Anonymous], 2014, COMPUT INTELL DATA M
  • [5] Fast and robust fuzzy c-means clustering algorithms incorporating local information for image segmentation
    Cai, Weiling
    Chen, Songean
    Zhang, Daoqiang
    [J]. PATTERN RECOGNITION, 2007, 40 (03) : 825 - 838
  • [6] Robust image segmentation using FCM with spatial constraints based on new kernel-induced distance measure
    Chen, SC
    Zhang, DQ
    [J]. IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS, 2004, 34 (04): : 1907 - 1916
  • [7] Three phases segmentation from Ni/YSZ anode optical microscopy images using quantum-inspired mixture clustering model
    Fu, Xiaowei
    Guo, Chengzhen
    Xu, Xin
    Li, Xi
    [J]. OPTICAL ENGINEERING, 2018, 57 (07)
  • [8] Fuzzy C-Means Clustering With Local Information and Kernel Metric for Image Segmentation
    Gong, Maoguo
    Liang, Yan
    Shi, Jiao
    Ma, Wenping
    Ma, Jingjing
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2013, 22 (02) : 573 - 584
  • [9] Three-Dimensional Reconstruction and Microstructure Modeling of Porosity-Graded Cathode Using Focused Ion Beam and Homogenization Techniques
    Hamedani, H. Amani
    Baniassadi, M.
    Sheidaei, A.
    Pourboghrat, F.
    Remond, Y.
    Khaleel, M.
    Garmestani, H.
    [J]. FUEL CELLS, 2014, 14 (01) : 91 - 95
  • [10] Fuzzy C-means and fuzzy swarm for fuzzy clustering problem
    Izakian, Hesam
    Abraham, Ajith
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2011, 38 (03) : 1835 - 1838