Sliding homoclinic bifurcations in a Lorenz-type system: Analytic proofs

被引:32
作者
Belykh, Vladimir N. [1 ,2 ]
Barabash, Nikita V. [1 ,2 ]
Belykh, Igor V. [2 ,3 ]
机构
[1] Volga State Univ Water Transport, Dept Math, 5A Nesterov Str, Nizhnii Novgorod 603950, Russia
[2] Lobachevsky State Univ Nizhny Novgorod, Dept Control Theory, 23 Gagarin Ave, Nizhnii Novgorod 603950, Russia
[3] Georgia State Univ, Dept Math & Stat, POB 4110, Atlanta, GA 30302 USA
基金
俄罗斯科学基金会; 美国国家科学基金会;
关键词
DISCONTINUITY-INDUCED BIFURCATIONS; BORDER-COLLISION BIFURCATIONS; PIECEWISE-SMOOTH; TRANSITIVE ATTRACTOR; CHAOS; EXISTENCE; SYNCHRONIZATION; EQUATIONS; DYNAMICS; MODELS;
D O I
10.1063/5.0044731
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Non-smooth systems can generate dynamics and bifurcations that are drastically different from their smooth counterparts. In this paper, we study such homoclinic bifurcations in a piecewise-smooth analytically tractable Lorenz-type system that was recently introduced by Belykh et al. [Chaos 29, 103108 (2019)]. Through a rigorous analysis, we demonstrate that the emergence of sliding motions leads to novel bifurcation scenarios in which bifurcations of unstable homoclinic orbits of a saddle can yield stable limit cycles. These bifurcations are in sharp contrast with their smooth analogs that can generate only unstable (saddle) dynamics. We construct a Poincare return map that accounts for the presence of sliding motions, thereby rigorously characterizing sliding homoclinic bifurcations that destroy a chaotic Lorenz-type attractor. In particular, we derive an explicit scaling factor for period-doubling bifurcations associated with sliding multi-loop homoclinic orbits and the formation of a quasi-attractor. Our analytical results lay the foundation for the development of non-classical global bifurcation theory in non-smooth flow systems.
引用
收藏
页数:17
相关论文
共 73 条
[1]   Numerical simulation of piecewise-linear models of gene regulatory networks using complementarity systems [J].
Acary, Vincent ;
de Jong, Hidde ;
Brogliato, Bernard .
PHYSICA D-NONLINEAR PHENOMENA, 2014, 269 :103-119
[2]  
AFRAIMOVICH VS, 1977, DOKL AKAD NAUK SSSR+, V234, P336
[3]  
Andronov A. A., 1959, THEORY OSCILLATIONS
[4]   A POSSIBLE NEW MECHANISM FOR THE ONSET OF TURBULENCE [J].
ARNEODO, A ;
COULLET, P ;
TRESSER, C .
PHYSICS LETTERS A, 1981, 81 (04) :197-201
[5]   Ghost attractors in blinking Lorenz and Hindmarsh-Rose systems [J].
Barabash, Nikita V. ;
Levanova, Tatiana A. ;
Belykh, Vladimir N. .
CHAOS, 2020, 30 (08)
[6]   KNEADINGS, SYMBOLIC DYNAMICS AND PAINTING LORENZ CHAOS [J].
Barrio, Roberto ;
Shilnikov, Andrey ;
Shilnikov, Leonid .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2012, 22 (04)
[7]   Multistable randomly switching oscillators: The odds of meeting a ghost [J].
Belykh, I. ;
Belykh, V. ;
Jeter, R. ;
Hasler, M. .
EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2013, 222 (10) :2497-2507
[8]   Foot force models of crowd dynamics on a wobbly bridge [J].
Belykh, Igor ;
Jeter, Russell ;
Belykh, Vladimir .
SCIENCE ADVANCES, 2017, 3 (11)
[9]   Bistable gaits and wobbling induced by pedestrian-bridge interactions [J].
Belykh, Igor V. ;
Jeter, Russell ;
Belykh, Vladimir N. .
CHAOS, 2016, 26 (11)
[10]   Bifurcations of Chaotic Attractors in a Piecewise Smooth Lorenz-Type System [J].
Belykh, V. N. ;
Barabash, N. V. ;
Belykh, I. V. .
AUTOMATION AND REMOTE CONTROL, 2020, 81 (08) :1385-1393