The Euler-Lagrange equation for the Anisotropic least gradient problem

被引:24
作者
Mazon, Jose M. [1 ]
机构
[1] Univ Valencia, Dept Anal Matemat, Valencia, Spain
关键词
Functions of least gradient; Conductivity imaging problem; Anisotropy total variation;
D O I
10.1016/j.nonrwa.2016.02.009
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we find the Euler-Lagrange equation for the anisotropic least gradient problem inf {integral(Omega) phi(x, Du) : u is an element of BV(Omega), u vertical bar(partial derivative Omega) = f} being phi a metric integrand and f is an element of L-1(partial derivative Omega). We also characterize the functions of phi-least gradient as those whose boundary of the level set is phi-area minimizing in Omega. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:452 / 472
页数:21
相关论文
共 27 条
[1]   A NOTION OF TOTAL VARIATION DEPENDING ON A METRIC WITH DISCONTINUOUS COEFFICIENTS [J].
AMAR, M ;
BELLETTINI, G .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1994, 11 (01) :91-133
[2]  
Ambrosio L., 2000, OXFORD MATH MONOGRAP
[3]  
Andreu F., 2004, Progress in Mathematics, V223
[4]  
ANZELLOTTI G, 1983, ANN MAT PUR APPL, V135, P293
[5]  
Bellettini G, 1999, J CONVEX ANAL, V6, P349
[6]   MINIMAL CONES AND BERNSTEIN PROBLEM [J].
BOMBIERI, E ;
DEGIORGI, E ;
GIUSTI, E .
INVENTIONES MATHEMATICAE, 1969, 7 (03) :243-&
[7]  
Brezis H., 1976, OPERATEURS MAXIMAUX
[8]   Anisotropic Cheeger Sets and Applications [J].
Caselles, Vicent ;
Facciolo, Gabriele ;
Meinhardt, Enric .
SIAM JOURNAL ON IMAGING SCIENCES, 2009, 2 (04) :1211-1254
[9]   CURRENT DENSITY IMPEDANCE IMAGING OF AN ANISOTROPIC CONDUCTIVITY IN A KNOWN CONFORMAL CLASS [J].
Hoell, Nicholas ;
Moradifam, Amir ;
Nachman, Adrian .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2014, 46 (03) :1820-1842
[10]  
Jerrard R.L., ARXIV13050535V1