Drift-preserving numerical integrators for stochastic Poisson systems

被引:0
作者
Cohen, David [1 ,2 ,3 ]
Vilmart, Gilles [4 ]
机构
[1] Umea Univ, Dept Math & Math Stat, Umea, Sweden
[2] Chalmers Univ Technol, Dept Math Sci, Gothenburg, Sweden
[3] Univ Gothenburg, Gothenburg, Sweden
[4] Univ Geneva, Sect Math, Geneva, Switzerland
基金
瑞典研究理事会; 瑞士国家科学基金会;
关键词
Stochastic differential equations; stochastic Hamiltonian systems; stochastic Poisson systems; energy; Casimir; trace formula; numerical schemes; strong convergence; weak convergence; RUNGE-KUTTA METHODS; HAMILTONIAN-SYSTEMS; DIFFERENTIAL-EQUATIONS; WAVE-EQUATIONS; ENERGY; DISCRETIZATION; SIMULATION; INVARIANTS; DRIVEN; STAGE;
D O I
10.1080/00207160.2021.1922679EN
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We perform a numerical analysis of a class of randomly perturbed Hamiltonian systems and Poisson systems. For the considered additive noise perturbation of such systems, we show the long-time behaviour of the energy and quadratic Casimirs for the exact solution. We then propose and analyse a drift-preserving splitting scheme for such problems with the following properties: exact drift preservation of energy and quadratic Casimirs, mean-square order of convergence 1, weak order of convergence 2. These properties are illustrated with numerical experiments.
引用
收藏
页码:4 / 20
页数:17
相关论文
共 50 条
[1]   HIGH WEAK ORDER METHODS FOR STOCHASTIC DIFFERENTIAL EQUATIONS BASED ON MODIFIED EQUATIONS [J].
Abdulle, Assyr ;
Cohen, David ;
Vilmart, Gilles ;
Zygalakis, Konstantinos C. .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2012, 34 (03) :A1800-A1823
[2]   WORD COMBINATORICS FOR STOCHASTIC DIFFERENTIAL EQUATIONS: SPLITTING INTEGRATORS [J].
Alamo, A. ;
Sanz-Serna, J. M. .
COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2019, 18 (04) :2163-2195
[3]   EXPONENTIAL INTEGRATORS FOR STOCHASTIC SCHRODINGER EQUATIONS DRIVEN BY ITO NOISE [J].
Anton, Rikard ;
Cohen, David .
JOURNAL OF COMPUTATIONAL MATHEMATICS, 2018, 36 (02) :276-309
[4]   FULL DISCRETIZATION OF SEMILINEAR STOCHASTIC WAVE EQUATIONS DRIVEN BY MULTIPLICATIVE NOISE [J].
Anton, Rikard ;
Cohen, David ;
Larsson, Stig ;
Wang, Xiaojie .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2016, 54 (02) :1093-1119
[5]  
Blanes S., 2016, A Concise Introduction to Geometric Numerical Integration
[6]   Energy-preserving methods for Poisson systems [J].
Brugnano, L. ;
Calvo, M. ;
Montijano, J. I. ;
Randez, L. .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2012, 236 (16) :3890-3904
[7]   Analysis of Energy and QUadratic Invariant Preserving (EQUIP) methods [J].
Brugnano, Luigi ;
Gurioli, Gianmarco ;
Iavernaro, Felice .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2018, 335 :51-73
[8]   Line integral methods which preserve all invariants of conservative problems [J].
Brugnano, Luigi ;
Iavernaro, Felice .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2012, 236 (16) :3905-3919
[9]   Structure-preserving Runge-Kutta methods for stochastic Hamiltonian equations with additive noise [J].
Burrage, Pamela M. ;
Burrage, Kevin .
NUMERICAL ALGORITHMS, 2014, 65 (03) :519-532
[10]   Energy-Preserving Integrators Applied to Nonholonomic Systems [J].
Celledoni, Elena ;
Puiggali, Marta Farre ;
Hoiseth, Eirik Hoel ;
Martin de Diego, David .
JOURNAL OF NONLINEAR SCIENCE, 2019, 29 (04) :1523-1562