Positive Solution of Extremal Pucci's Equations with Singular and Sublinear Nonlinearity

被引:6
作者
Tyagi, J. [1 ]
Verma, R. B. [1 ]
机构
[1] Indian Inst Technol Gandhinagar, Gandhinagar 382355, Gujarat, India
关键词
Pucci's operator; Positive solutions; Singular and sublinear nonlinearity; Viscosity solutions; ELLIPTIC-EQUATIONS; DIRICHLET PROBLEM; EXISTENCE; EIGENVALUES; BOUNDARY;
D O I
10.1007/s00009-017-0950-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we establish the existence of a positive solution to {-M-lambda,Lambda(+) (D(2)u) = mu k(x)f(u)/u(alpha) - eta h(x)u(q) in Omega u = 0 on partial derivative Omega, where Omega is a smooth bounded domain in R-n, n >= 1. Under certain conditions on k, f and h, using viscosity sub- and super solution method with the aid of comparison principle, we establish the existence of a unique positive viscosity solution. This work extends and complements the earlier works on semilinear and singular elliptic equations with sublinear nonlinearity.
引用
收藏
页数:17
相关论文
共 31 条
[1]  
[Anonymous], REND MAT APPL
[2]  
[Anonymous], 1997, Adv. Differential Equations
[3]  
[Anonymous], 2007, DIRICHLET PROBLEM SI
[4]  
[Anonymous], 1995, AM MATH SOC COLLOQ P
[5]  
Bertozzi AL, 1998, COMMUN PUR APPL MATH, V51, P625, DOI 10.1002/(SICI)1097-0312(199806)51:6<625::AID-CPA3>3.0.CO
[6]  
2-9
[7]  
Bertozzi AL, 2000, INDIANA U MATH J, V49, P1323
[8]   Eigenvalue, maximum principle and regularity for fully non linear homogeneous operators [J].
Birindelli, I. ;
Demengel, F. .
COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2007, 6 (02) :335-366
[9]  
Boccardo L, 2012, ADV NONLINEAR STUD, V12, P187
[10]   Semilinear elliptic equations with singular nonlinearities [J].
Boccardo, Lucio ;
Orsina, Luigi .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2010, 37 (3-4) :363-380