Multiple learning backtracking search algorithm for estimating parameters of photovoltaic models

被引:314
作者
Yu, Kunjie [1 ,2 ]
Liang, J. J. [1 ]
Qu, B. Y. [3 ]
Cheng, Zhiping [1 ]
Wang, Heshan [1 ]
机构
[1] Zhengzhou Univ, Sch Elect Engn, Zhengzhou 450001, Henan, Peoples R China
[2] East China Univ Sci & Technol, Minist Educ, Key Lab Adv Control & Optimizat Chem Proc, Shanghai 200237, Peoples R China
[3] Zhongyuan Univ Technol, Sch Elect & Informat Engn, Zhengzhou 450007, Henan, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
Parameter identification; Photovoltaic model; Backtracking search algorithm; Multiple learning; SOLAR-CELL MODELS; PARTICLE SWARM OPTIMIZATION; ARTIFICIAL BEE COLONY; BIOGEOGRAPHY-BASED OPTIMIZATION; BACTERIAL FORAGING ALGORITHM; FLOWER POLLINATION ALGORITHM; OPTIMAL POWER-FLOW; PV CELLS; DIFFERENTIAL EVOLUTION; EXTRACTION;
D O I
10.1016/j.apenergy.2018.06.010
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Obtaining appropriate parameters of photovoltaic models based on measured current-voltage data is crucial for the evaluation, control, and optimization of photovoltaic systems. Although many techniques have been developed to solve this problem, it is still challenging to identify the model parameters accurately and reliably. To improve parameters identification of different photovoltaic models, a multiple learning backtracking search algorithm (MLBSA) is proposed in this paper. In MLBSA, some individuals learn from the current population information and historical population information simultaneously, which aims to maintain population diversity and enhance the exploration ability. While other individuals learn from the best individual of current population to improve the convergence speed and thus enhance the exploitation ability. In addition, an elite strategy based on chaotic local search is developed to further refine the quality of current population. The proposed MLBSA is employed to solve the parameters identification problems of different photovoltaic models, i.e., single diode, double diode, and photovoltaic module. Comprehensive experimental results and analyses demonstrate that MLBSA outperforms other state-of-the-art algorithms in terms of accuracy, reliability, and computational efficiency.
引用
收藏
页码:408 / 422
页数:15
相关论文
共 63 条
[1]   Flower Pollination Algorithm based solar PV parameter estimation [J].
Alam, D. F. ;
Yousri, D. A. ;
Eteiba, M. B. .
ENERGY CONVERSION AND MANAGEMENT, 2015, 101 :410-422
[2]   KEEL: a software tool to assess evolutionary algorithms for data mining problems [J].
Alcala-Fdez, J. ;
Sanchez, L. ;
Garcia, S. ;
del Jesus, M. J. ;
Ventura, S. ;
Garrell, J. M. ;
Otero, J. ;
Romero, C. ;
Bacardit, J. ;
Rivas, V. M. ;
Fernandez, J. C. ;
Herrera, F. .
SOFT COMPUTING, 2009, 13 (03) :307-318
[3]   Parameters extraction of the three diode model for the multi-crystalline solar cell/module using Moth-Flame Optimization Algorithm [J].
Allam, Dalia ;
Yousri, D. A. ;
Eteiba, M. B. .
ENERGY CONVERSION AND MANAGEMENT, 2016, 123 :535-548
[4]  
[Anonymous], 2016, SOFT COMPUT
[5]  
[Anonymous], SOFT COMPUT
[6]   On the use of probabilistic forecasts in scheduling of renewable energy sources coupled to storages [J].
Appino, Riccardo Remo ;
Ordiano, Jorge Angel Gonzalez ;
Mikut, Ralf ;
Faulwasser, Timm ;
Hagenmeyer, Veit .
APPLIED ENERGY, 2018, 210 :1207-1218
[7]   Determination of photovoltaic modules parameters at different operating conditions using a novel bird mating optimizer approach [J].
Askarzadeh, Alireza ;
Coelho, Leandro dos Santos .
ENERGY CONVERSION AND MANAGEMENT, 2015, 89 :608-614
[8]   Artificial bee swarm optimization algorithm for parameters identification of solar cell models [J].
Askarzadeh, Alireza ;
Rezazadeh, Alireza .
APPLIED ENERGY, 2013, 102 :943-949
[9]   Variations of the bacterial foraging algorithm for the extraction of PV module parameters from nameplate data [J].
Awadallah, Mohamed A. .
ENERGY CONVERSION AND MANAGEMENT, 2016, 113 :312-320
[10]   Optimal power flow of two-terminal HVDC systems using backtracking search algorithm [J].
Ayan, Kursat ;
Kilic, Ulas .
INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 2016, 78 :326-335