Kinetics of chromate adsorption on goethite in the presence of sorbed silicic acid

被引:30
作者
Garman, SM [1 ]
Luxton, TP [1 ]
Eick, MJ [1 ]
机构
[1] Virginia Polytech Inst & State Univ, Dept Crop & Soil Environm Sci, Blacksburg, VA 24061 USA
关键词
D O I
10.2134/jeq2004.1703
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The adsorption of chromate on mineral surfaces has received much attention due to its toxicity in natural systems. Spectroscopic studies have demonstrated that chromate forms inner-sphere complexes on variable-charge surfaces. However, in natural systems chromate has been observed to be fairly mobile, which has been explained by the presence of naturally occurring ligands competing with chromate for mineral surface sites. Silicic acid is a ubiquitous ligand in soil and water environments and also sorbs strongly to variable-charge surfaces. Yet little research has examined its influence on chromate adsorption to variable-charge surfaces such as goethite. This study examined the influence of silicic acid (0.10 and 1.0 mM) on the adsorption kinetics of chromate (0.05 and 0.10 mM) on goethite over a range of common soil pH values (4, 6, and 8). The rate and total quantity of chromate adsorption decreased in all the experiments except at a pH value of 4 and a chromate concentration of 0.05 mM. The inhibition of chromate adsorption ranged from 3.1% (pH = 4, Si = 0.10 mM, chromate = 0.10 mM) to 83.3% (pH = 8, Si = 1.0 mM, chromate = 0.05 mM). The rate of chromate adsorption decreased with an increase in pH and silicic acid concentration. This was attributed to a reduction in the surface potential of goethite on silicic acid adsorption as well as a competition for surface sites. The presence of naturally occurring ligands such as silicic acid may be responsible for the enhanced mobility of chromate in natural systems and demonstrates the importance of competitive adsorption for evaluating the mobility of trace elements.
引用
收藏
页码:1703 / 1708
页数:6
相关论文
共 36 条
[1]   An XPS study of the adsorption of chromate on goethite (alpha-FeOOH) [J].
AbdelSamad, H ;
Watson, PR .
APPLIED SURFACE SCIENCE, 1997, 108 (03) :371-377
[2]   CHROMATE ADSORPTION ON GOETHITE - EFFECTS OF ALUMINUM SUBSTITUTION [J].
AINSWORTH, CC ;
GIRVIN, DC ;
ZACHARA, JM ;
SMITH, SC .
SOIL SCIENCE SOCIETY OF AMERICA JOURNAL, 1989, 53 (02) :411-418
[3]   ADSORPTION OF PROTOLYZABLE ANIONS ON HYDROUS OXIDES AT THE ISOELECTRIC PH [J].
ANDERSON, MA ;
MALOTKY, DT .
JOURNAL OF COLLOID AND INTERFACE SCIENCE, 1979, 72 (03) :413-427
[4]  
[Anonymous], SSSA BOOK SERIES
[5]   Surface hydroxyl configuration of various crystal faces of hematite and goethite [J].
Barron, V ;
Torrent, J .
JOURNAL OF COLLOID AND INTERFACE SCIENCE, 1996, 177 (02) :407-410
[6]   A MECHANISTIC MODEL FOR DESCRIBING THE SORPTION AND DESORPTION OF PHOSPHATE BY SOIL [J].
BARROW, NJ .
JOURNAL OF SOIL SCIENCE, 1983, 34 (04) :733-750
[7]   Kinetics of lead adsorption/desorption on goethite: Residence time effect [J].
Eick, MJ ;
Peak, JD ;
Brady, PV ;
Pesek, JD .
SOIL SCIENCE, 1999, 164 (01) :28-39
[8]   SOLUBILITY OF SILICA IN SOILS [J].
ELGAWHAR.SM ;
LINDSAY, WL .
SOIL SCIENCE SOCIETY OF AMERICA PROCEEDINGS, 1972, 36 (03) :439-&
[9]   Arsenate and chromate retention mechanisms on goethite .1. Surface structure [J].
Fendorf, S ;
Eick, MJ ;
Grossl, P ;
Sparks, DL .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 1997, 31 (02) :315-320
[10]   Arsenate and chromate retention mechanisms on goethite .2. Kinetic evaluation using a pressure-jump relaxation technique [J].
Grossl, PR ;
Eick, M ;
Sparks, DL ;
Goldberg, S ;
Ainsworth, CC .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 1997, 31 (02) :321-326