The Dirichlet Markov Ensemble

被引:17
作者
Chafai, Djalil [1 ]
机构
[1] Univ Paris Est Marne la Vallee, Lab Anal & Math Appl, CNRS, UMR 8050, F-77454 Champs Sur Marne 2, France
关键词
Random matrices; Markov matrices; Dirichlet laws; Spectral gap; SINGULAR-VALUES; MATRICES; EIGENVALUES; DISTRIBUTIONS; TOEPLITZ; HANKEL; LIMIT;
D O I
10.1016/j.jmva.2009.10.013
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We equip the polytope of n x n Markov matrices with the normalized trace of the Lebesgue measure of R-n2. This probability space provides random Markov matrices, with i.i.d. rows following the Dirichlet distribution of mean (1/n,..., 1/n). We show that if M is such a random matrix, then the empirical distribution built from the singular values of root n M tends as n -> infinity to a Wigner quarter-circle distribution. Some computer simulations reveal striking asymptotic spectral properties of such random matrices, still waiting for a rigorous mathematical analysis. In particular, we believe that with probability one, the empirical distribution of the complex spectrum of root n M tends as n -> infinity to the uniform distribution on the unit disc of the complex plane, and that moreover, the spectral gap of M is of order 1 - 1/root n when n is large. (C) 2009 Elsevier Inc. All rights reserved.
引用
收藏
页码:555 / 567
页数:13
相关论文
共 59 条
[11]   A probabilistic approach to the geometry of the lnp-ball [J].
Barthe, F ;
Guédon, O ;
Mendelson, S ;
Naor, A .
ANNALS OF PROBABILITY, 2005, 33 (02) :480-513
[12]   Birkhoff's polytope and unistochastic matrices, N=3 and N=4 [J].
Bengtsson, I ;
Ericsson, Å ;
Kus, M ;
Tadej, W ;
Zyczkowski, K .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2005, 259 (02) :307-324
[13]   Spectral gap of doubly stochastic matrices generated from equidistributed unitary matrices [J].
Berkolaiko, G .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2001, 34 (22) :L319-L326
[14]  
Biane P, 1997, INDIANA U MATH J, V46, P705
[15]   Another look at the moment method for large dimensional random matrices [J].
Bose, Arup ;
Sen, Arnab .
ELECTRONIC JOURNAL OF PROBABILITY, 2008, 13 :588-628
[16]  
Bose A, 2007, ELECTRON COMMUN PROB, V12, P29
[17]   Symmetry Analysis of Reversible Markov Chains [J].
Boyd, Stephen ;
Diaconis, Persi ;
Parrilo, Pablo ;
Xiao, Lin .
INTERNET MATHEMATICS, 2005, 2 (01) :31-71
[18]   Spectral measure of large random Hankel, Markov and Toeplitz matrices [J].
Bryc, W ;
Dembo, A ;
Jiang, TF .
ANNALS OF PROBABILITY, 2006, 34 (01) :1-38
[19]   Aspects of large random Markov kernels [J].
Chafai, Djalil .
STOCHASTICS-AN INTERNATIONAL JOURNAL OF PROBABILITY AND STOCHASTIC PROCESSES, 2009, 81 (3-4) :415-429
[20]   The cutoff phenomenon for ergodic Markov processes [J].
Chen, Guan-Yu ;
Saloff-Coste, Laurent .
ELECTRONIC JOURNAL OF PROBABILITY, 2008, 13 :26-78