The Dirichlet Markov Ensemble

被引:17
作者
Chafai, Djalil [1 ]
机构
[1] Univ Paris Est Marne la Vallee, Lab Anal & Math Appl, CNRS, UMR 8050, F-77454 Champs Sur Marne 2, France
关键词
Random matrices; Markov matrices; Dirichlet laws; Spectral gap; SINGULAR-VALUES; MATRICES; EIGENVALUES; DISTRIBUTIONS; TOEPLITZ; HANKEL; LIMIT;
D O I
10.1016/j.jmva.2009.10.013
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We equip the polytope of n x n Markov matrices with the normalized trace of the Lebesgue measure of R-n2. This probability space provides random Markov matrices, with i.i.d. rows following the Dirichlet distribution of mean (1/n,..., 1/n). We show that if M is such a random matrix, then the empirical distribution built from the singular values of root n M tends as n -> infinity to a Wigner quarter-circle distribution. Some computer simulations reveal striking asymptotic spectral properties of such random matrices, still waiting for a rigorous mathematical analysis. In particular, we believe that with probability one, the empirical distribution of the complex spectrum of root n M tends as n -> infinity to the uniform distribution on the unit disc of the complex plane, and that moreover, the spectral gap of M is of order 1 - 1/root n when n is large. (C) 2009 Elsevier Inc. All rights reserved.
引用
收藏
页码:555 / 567
页数:13
相关论文
共 59 条
[1]  
Anderson G. W., 2009, Cambridge Studies in Advanced Mathematics
[2]   EIGENVALUES AND SINGULAR-VALUES OF CERTAIN RANDOM MATRICES [J].
ANDREW, AL .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1990, 30 (02) :165-171
[3]  
[Anonymous], 1997, LOGARITHMIC POTENTIA, DOI DOI 10.1007/978-3-662-03329-6
[4]  
[Anonymous], 1997, LECT PROBABILITY THE, DOI DOI 10.1007/BFB0092621
[5]  
[Anonymous], 1994, J. Amer. Math. Soc., DOI DOI 10.1090/S0894-0347-1994-1231689-0
[6]   Sampling convex bodies: A random matrix approach [J].
Aubrun, Guillaume .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2007, 135 (05) :1293-1303
[7]   Random points in the unit ball of lpn [J].
Aubrun, Guillaume .
POSITIVITY, 2006, 10 (04) :755-759
[8]  
Bai ZD, 1999, STAT SINICA, V9, P611
[9]   LIMIT OF THE SMALLEST EIGENVALUE OF A LARGE DIMENSIONAL SAMPLE COVARIANCE-MATRIX [J].
BAI, ZD ;
YIN, YQ .
ANNALS OF PROBABILITY, 1993, 21 (03) :1275-1294
[10]  
BAI ZD, 2006, MATH MONOGRAPH SERIE, V2