A polynomial identity for the bilinear operation in Lie-Yamaguti algebras

被引:0
|
作者
Bremner, Murray R. [1 ]
机构
[1] Univ Saskatchewan, Dept Math & Stat, Saskatoon, SK S7N 0W0, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
computer algebra; representation theory of the symmetric group; polynomial identities; anticommutative algebras; Lie-Yamaguti algebras; 17A32; 17A50; Primary; 17A30; 17B01; 17A40; Secondary; 17-04;
D O I
10.1080/03081087.2013.840617
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We use computer algebra to demonstrate the existence of a multilinear polynomial identity of degree 8 satisfied by the bilinear operation in every Lie-Yamaguti algebra. This identity is a consequence of the defining identities for Lie-Yamaguti algebras, but is not a consequence of anticommutativity. We give an explicit form of this identity as an alternating sum over all permutations of the variables in a nonassociative polynomial with 8 terms. Our computations show that no such identities exist in degrees less than 8.
引用
收藏
页码:1671 / 1682
页数:12
相关论文
共 12 条
  • [1] Symmetric matrices, orthogonal Lie algebras and Lie-Yamaguti algebras
    Benito, Pilar
    Bremner, Murray
    Madariaga, Sara
    LINEAR & MULTILINEAR ALGEBRA, 2015, 63 (06) : 1257 - 1281
  • [2] On the Deformation of Lie-Yamaguti Algebras
    Lin, Jie
    Chen, Liang Yun
    Ma, Yao
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2015, 31 (06) : 938 - 946
  • [3] Irreducible Lie-Yamaguti algebras
    Benito, Pilar
    Elduque, Alberto
    Martin-Herce, Fabign
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2009, 213 (05) : 795 - 808
  • [4] Automorphisms of extensions of Lie-Yamaguti algebras and inducibility problem
    Goswami, Saikat
    Mishra, Satyendra Kumar
    Mukherjee, Goutam
    JOURNAL OF ALGEBRA, 2024, 641 : 268 - 306
  • [5] Quasi-derivations of Lie-Yamaguti algebras
    Lin, Jie
    Chen, Liangyun
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2023, 22 (05)
  • [6] The simple non-Lie Malcev algebra as a Lie-Yamaguti algebra
    Bremner, Murray R.
    Douglas, Andrew
    JOURNAL OF ALGEBRA, 2012, 358 : 269 - 291
  • [7] Universal coacting Hopf algebra of a finite dimensional Lie-Yamaguti algebra
    Goswami, Saikat
    Mishra, Satyendra Kumar
    Mukherjee, Goutam
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2024, 703 : 556 - 583
  • [8] Codimension growth for polynomial identities of representations of Lie algebras
    da Silva Macedo, David Levi
    Koshlukov, Plamen
    MATHEMATISCHE NACHRICHTEN, 2022, 295 (02) : 281 - 308
  • [9] Polynomial identities of bicommutative algebras, Lie and Jordan elements
    Dzhumadil'daev, Askar S.
    Ismailov, Nurlan A.
    COMMUNICATIONS IN ALGEBRA, 2018, 46 (12) : 5241 - 5251
  • [10] Group algebras whose units satisfy a Laurent polynomial identity
    Osnel Broche
    Jairo Z. Gonçalves
    Ángel del Río
    Archiv der Mathematik, 2018, 111 : 353 - 367