Determining a magnetic Schroedinger operator from partial Cauchy data

被引:106
作者
Dos Santos Ferreira, David [1 ]
Kenig, Carlos E.
Sjostrand, Johannes
Uhlmann, Gunther
机构
[1] Univ Paris 13, Inst Galilee, F-93430 Villetaneuse, France
[2] Univ Chicago, Dept Math, Chicago, IL 60637 USA
[3] Ecole Polytech, CMLS, F-91128 Palaiseau, France
[4] Univ Washington, Dept Math, Seattle, WA 98195 USA
关键词
D O I
10.1007/s00220-006-0151-9
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper we show, in dimension n >= 3, that knowledge of the Cauchy data for the Schrodinger equation in the presence of a magnetic potential, measured on possibly very small subsets of the boundary, determines uniquely the magnetic field and the electric potential. We follow the general strategy of [7] using a richer set of solutions to the Dirichlet problem that has been used in previous works on this problem.
引用
收藏
页码:467 / 488
页数:22
相关论文
共 13 条
[1]  
BOMAN J, 1991, LECT NOTES MATH, V1497, P1
[2]   SUPPORT THEOREMS FOR REAL-ANALYTIC RADON TRANSFORMS [J].
BOMAN, J ;
QUINTO, ET .
DUKE MATHEMATICAL JOURNAL, 1987, 55 (04) :943-948
[3]   INVERSE SCATTERING PROBLEM FOR THE SCHRODINGER-EQUATION WITH MAGNETIC POTENTIAL AT A FIXED-ENERGY [J].
ESKIN, G ;
RALSTON, J .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1995, 173 (01) :199-224
[4]  
Helgason S., 1999, PROGR MATH, V2nd edn
[5]  
HORMANDER L, 1993, ANN I FOURIER, V43, P1223
[6]  
Hormander L., 2003, CLASSICS MATH, VI
[7]  
KENIG CE, IN PRESS ANN MATH
[8]   GLOBAL IDENTIFIABILITY FOR AN INVERSE PROBLEM FOR THE SCHRODINGER-EQUATION IN A MAGNETIC-FIELD [J].
NAKAMURA, G ;
SUN, ZQ ;
UHLMANN, G .
MATHEMATISCHE ANNALEN, 1995, 303 (03) :377-388
[9]   THE DELTA-BAR-EQUATION IN THE MULTIDIMENSIONAL INVERSE SCATTERING PROBLEM [J].
NOVIKOV, RG ;
KHENKIN, GM .
RUSSIAN MATHEMATICAL SURVEYS, 1987, 42 (03) :109-180
[10]  
SALO M, IN PRESS COMM PDE