NOVEL PLASMONIC MATERIALS TO IMPROVE THIN FILM SOLAR CELLS EFFICIENCY

被引:2
作者
Saiprasad, N. [1 ]
Boretti, A. [2 ]
Rosa, L. [3 ,4 ]
Castelletto, S. [1 ]
机构
[1] RMIT Univ, Sch Aerosp Mech & Mfg Engn, Bundoora, Vic, Australia
[2] W Virginia Univ, Benjamin M Statler Coll Engn & Mineral Resources, Dept Mech & Aerosp Engn MAE, Morgantown, WV 26506 USA
[3] Swinburne Univ Technol, Ctr Microphoton H74, Hawthorn, Vic 3122, Australia
[4] Univ Parma, Dept Informat Engn, I-43100 Parma, Italy
来源
MICRO+NANO MATERIALS, DEVICES, AND SYSTEMS | 2015年 / 9668卷
关键词
Solar cells; nanoparticles; plasmonic materials; localized surface polaritons (LSPs); AZO; GZO; ITO; TaN; HfN; TiN; ZrN; NANOSTRUCTURES; NANOPARTICLES; TCO;
D O I
10.1117/12.2202475
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Thin film solar cells have been widely studied with the focus on how to improve light trapping mechanism and enhance the overall photon-electrons conversion efficiency. The effect of novel plasmonic materials based on wide bandgap semiconductors, such as metals heavily doped zinc oxides and metal nitrides, are here studied in relation to their potential use in thin film solar cells. Here, we show that metal nitrides can play similar roles as gold nanoparticles on a surface of a Si-thin film solar cell, possibly without introducing excessive dissipative absorption, while metals doped zinc oxide nanoparticles could significantly improve the efficiency of thin film solar cells.
引用
收藏
页数:10
相关论文
共 25 条
[1]  
Atwater HA, 2010, NAT MATER, V9, P205, DOI [10.1038/NMAT2629, 10.1038/nmat2629]
[2]   Experimental Evaluation of the Light Trapping Potential of Optical Nanostructures for Thin-Film Silicon Solar Cells [J].
Battaglia, Corsin ;
Escarre, Jordi ;
Soederstroem, Karin ;
Boccard, M. ;
Ballif, C. .
INTERNATIONAL CONFERENCE ON MATERIALS FOR ADVANCED TECHNOLOGIES 2011, SYMPOSIUM O, 2012, 15 :206-211
[3]   Low-Loss Plasmonic Metamaterials [J].
Boltasseva, Alexandra ;
Atwater, Harry A. .
SCIENCE, 2011, 331 (6015) :290-291
[4]  
Castelletto S., 2012, P SOC PHOTO-OPT INS, V8470
[5]   Design principles for particle plasmon enhanced solar cells [J].
Catchpole, K. R. ;
Polman, A. .
APPLIED PHYSICS LETTERS, 2008, 93 (19)
[6]  
Clavero C, 2014, NAT PHOTONICS, V8, P95, DOI [10.1038/nphoton.2013.238, 10.1038/NPHOTON.2013.238]
[7]   New materials for tunable plasmonic colloidal nanocrystals [J].
Comin, Alberto ;
Manna, Liberato .
CHEMICAL SOCIETY REVIEWS, 2014, 43 (11) :3957-3975
[8]   Role of metal and dielectric nanoparticles in the performance enhancement of silicon solar cells [J].
Das, Sonali ;
Kundu, Avra ;
Saha, Hiranmay ;
Datta, Swapan K. .
JOURNAL OF MODERN OPTICS, 2012, 59 (14) :1219-1231
[9]   Non-injection Synthesis of Doped Zinc Oxide Plasmonic Nanocrystals [J].
Della Gaspera, Enrico ;
Chesman, Anthony S. R. ;
van Embden, Joel ;
Jasieniak, Jacek J. .
ACS NANO, 2014, 8 (09) :9154-9163
[10]   How front side plasmonic nanostructures enhance solar cell efficiency [J].
Diukman, Iddo ;
Orenstein, Meir .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2011, 95 (09) :2628-2631