Event-triggered boundary control of constant-parameter reaction-diffusion PDEs: A small-gain approach

被引:75
作者
Espitia, Nicolas [1 ]
Karafyllis, Iasson [2 ]
Krstic, Miroslav [3 ]
机构
[1] Univ Lille, UMR 9189, Cent Lille, CNRS,CRIStAL,Ctr Rech Informat Signal & Automat L, F-59000 Lille, France
[2] Natl Tech Univ Athens, Dept Math, Zografou Campus, Athens 15780, Greece
[3] Univ Calif San Diego, Dept Mech & Aerosp Engn, La Jolla, CA 92093 USA
关键词
Reaction-diffusion systems; Backstepping control design; Event-triggered control; TIME STABILIZATION; FEEDBACK-CONTROL; SYSTEMS; DESIGN;
D O I
10.1016/j.automatica.2021.109562
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper deals with an event-triggered boundary control of constant-parameters reaction-diffusion PDE systems. The approach relies on the emulation of backstepping control along with a suitable triggering condition which establishes the time instants at which the control value needs to be updated. In this paper, it is shown that under the proposed event-triggered boundary control, there exists a minimal dwell-time (independent of the initial condition) between two triggering times and furthermore the well-posedness and global exponential stability are guaranteed. The analysis follows small-gain arguments and builds on recent papers on sampled-data control for this kind of PDE. A simulation example is presented to validate the theoretical results. (c) 2021 Elsevier Ltd. All rights reserved.
引用
收藏
页数:10
相关论文
共 40 条
  • [1] [Anonymous], 2016, STABILITY BOUNDARY S
  • [2] On the Lambert W function
    Corless, RM
    Gonnet, GH
    Hare, DEG
    Jeffrey, DJ
    Knuth, DE
    [J]. ADVANCES IN COMPUTATIONAL MATHEMATICS, 1996, 5 (04) : 329 - 359
  • [3] Null Controllability and Finite Time Stabilization for the Heat Equations with Variable Coefficients in Space in One Dimension via Backstepping Approach
    Coron, Jean-Michel
    Hoai-Minh Nguyen
    [J]. ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2017, 225 (03) : 993 - 1023
  • [4] Stability Analysis of a 2 x 2 Linear Hyperbolic System With a Sampled-Data Controller via Backstepping Method and Looped-Functionals
    Davo, Miguel Angel
    Bresch-Pietri, Delphine
    Prieur, Christophe
    Di Meglio, Florent
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2019, 64 (04) : 1718 - 1725
  • [5] Backstepping Control of Coupled Linear Parabolic PIDEs With Spatially Varying Coefficients
    Deutscher, Joachim
    Kerschbaum, Simon
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2018, 63 (12) : 4218 - 4233
  • [6] Espitia N., 2017, 2017 IEEE 56 ANN C D, P1266
  • [7] Boundary time-varying feedbacks for fixed-time stabilization of constant-parameter reaction-diffusion systems
    Espitia, Nicolas
    Polyakov, Andrey
    Efimov, Denis
    Perruquetti, Wilfrid
    [J]. AUTOMATICA, 2019, 103 : 398 - 407
  • [8] Event-Based Boundary Control of a Linear 2 x 2 Hyperbolic System via Backstepping Approach
    Espitia, Nicolas
    Girard, Antoine
    Marchand, Nicolas
    Prieur, Christophe
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2018, 63 (08) : 2686 - 2693
  • [9] Event-based stabilization of linear systems of conservation laws using a dynamic triggering condition
    Espitia, Nicolas
    Girard, Antoine
    Marchand, Nicolas
    Prieur, Christophe
    [J]. IFAC PAPERSONLINE, 2016, 49 (18): : 362 - 367
  • [10] Event-based control of linear hyperbolic systems of conservation laws
    Espitia, Nicolas
    Girard, Antoine
    Marchand, Nicolas
    Prieur, Christophe
    [J]. AUTOMATICA, 2016, 70 : 275 - 287