Human Action Imitation System Based on Nao Robot

被引:0
作者
Hu, Ning [1 ,2 ]
Zheng, Lin [1 ,2 ]
机构
[1] Wuhan Univ Technol, Sch Informat Engn, Wuhan, Hubei, Peoples R China
[2] Minist Educ, Key Lab Fiber Opt Sensing Technol & Informat Proc, Wuhan, Hubei, Peoples R China
来源
PROCEEDINGS OF 2019 IEEE 3RD INFORMATION TECHNOLOGY, NETWORKING, ELECTRONIC AND AUTOMATION CONTROL CONFERENCE (ITNEC 2019) | 2019年
关键词
Nao robot; deep learning; image processing;
D O I
10.1109/itnec.2019.8729383
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A human action imitation system based on Nao robot is proposed in this paper. A new strategy,combining Momentum with Stochastic gradient descent(SGD), is designed to accelerate the training process of Convolutional Neural Networks(CNN) . The CNN is used to recognize the 2D coordinate of joints of a human body. This data is translate to Nao Robot and make it to imitate human action.The experiments show that the training rate is faster than traditional training method. The Robot can imitate the human action accurately.
引用
收藏
页码:2261 / 2264
页数:4
相关论文
共 50 条
[31]   Haptic Intelligent Interfaces for NAO Robot Hand Control [J].
Melinte, Octavian ;
Viadareanu, Luigc ;
Munteanu, Ligia ;
Hou, Zeng-Guang ;
Bian, Gui-Bin ;
Yu, Hongnian ;
Cang, Shuang ;
Wang, Hongbo .
2015 INTERNATIONAL CONFERENCE ON ADVANCED MECHATRONIC SYSTEMS (ICAMECHS), 2015, :50-55
[32]   Integration of BERT Models in NAO Robot for Library Assistance [J].
Bouari, Yazid Alamou ;
Francelin Romero, Roseli Aparecida .
2024 BRAZILIAN SYMPOSIUM ON ROBOTICS, SBR, AND 2024 WORKSHOP ON ROBOTICS IN EDUCATION, WRE, 2024, :7-12
[33]   Bilateral Control-Based Imitation Learning for Velocity-Controlled Robot [J].
Sakaino, Sho .
PROCEEDINGS OF 2021 IEEE 30TH INTERNATIONAL SYMPOSIUM ON INDUSTRIAL ELECTRONICS (ISIE), 2021,
[34]   Data learning-based model-free adaptive control and application to an NAO robot [J].
Liu, Shida ;
Li, Zhen ;
Ji, Honghai ;
Hou, Zhongsheng ;
Chen, Lu .
INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2023, 33 (04) :2722-2747
[35]   Tool UTAUT Applied to Measure Interaction Experience with NAO Robot [J].
Vega, Adrian ;
Ramirez-Benavidez, Kryscia ;
Guerrero, Luis A. .
HUMAN-COMPUTER INTERACTION. DESIGN PRACTICE IN CONTEMPORARY SOCIETIES, HCI 2019, PT III, 2019, 11568 :501-512
[36]   LEARNING FAST WALKING PATTERNS FOR A NAO ROBOT USING QWALKING [J].
Ma, J. ;
Cameron, S. A. .
FIELD ROBOTICS, 2012, :257-264
[37]   Guitar Tuner and Song Performance Evaluation Using a NAO robot [J].
Melo, Rodrigo ;
Monteiro, Rodrigo de Paula ;
de Oliveira, Jose Paulo G. ;
Jeronimo, Bruno ;
Bastos-Filho, Carmelo J. A. ;
de Albuquerque, Anna Priscilla ;
Kelner, Judith .
2020 XVIII LATIN AMERICAN ROBOTICS SYMPOSIUM, 2020 XII BRAZILIAN SYMPOSIUM ON ROBOTICS AND 2020 XI WORKSHOP OF ROBOTICS IN EDUCATION (LARS-SBR-WRE 2020), 2020, :359-364
[38]   Smart Gesture Selection with Word Embeddings Applied to NAO Robot [J].
Almagro-Cadiz, Mario ;
Fresno, Victor ;
de la Paz Lopez, Felix .
BIOMEDICAL APPLICATIONS BASED ON NATURAL AND ARTIFICIAL COMPUTING, PT II, 2017, 10338 :167-179
[39]   Motion Imitation Robot Based on Artificial Neural Network with Minimization of Restrictions on Degrees of Freedom [J].
Kang, Jeong-Hun ;
Park, Seong-Jin ;
Kim, Ye-Won ;
Kang, Bo-Yeong .
INTERNATIONAL JOURNAL OF FUZZY LOGIC AND INTELLIGENT SYSTEMS, 2024, 24 (03) :242-257
[40]   Imitation of human expressions based on emotion estimation by mental simulation [J].
Horii T. ;
Nagai Y. ;
Asada M. .
Paladyn, 2016, 7 (01) :40-54