Infinitely many solutions for fractional Schrodinger equations with perturbation via variational methods

被引:2
作者
Li, Peiluan [1 ,2 ]
Shang, Youlin [1 ]
机构
[1] Henan Univ Sci & Technol, Sch Math & Stat, Luoyang 471023, Henan, Peoples R China
[2] Mem Univ Newfoundland, Dept Math & Stat, St John, NF A1B 3X7, Canada
关键词
Fractional Schrodinger equations; Variational methods; Infinitely many solutions; MULTIPLE SOLUTIONS; POSITIVE SOLUTIONS; EXISTENCE; LAPLACIAN;
D O I
10.1515/math-2017-0053
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Using variational methods, we investigate the solutions of a class of fractional Schrodinger equations with perturbation. The existence criteria of infinitely many solutions are established by symmetric mountain pass theorem, which extend the results in the related study. An example is also given to illustrate our results.
引用
收藏
页码:578 / 586
页数:9
相关论文
共 29 条
[1]  
[Anonymous], 1999, FRACTIONAL DIFFERENT
[2]  
[Anonymous], 2006, Journal of the Electrochemical Society
[3]  
[Anonymous], 1986, CBMS REG C SER MATH
[4]   Elliptic problems involving the fractional Laplacian in RN [J].
Autuori, Giuseppina ;
Pucci, Patrizia .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2013, 255 (08) :2340-2362
[5]   Ground state of scalar field equations involving a fractional Laplacian with general nonlinearity [J].
Chang, X. ;
Wang, Z-Q .
NONLINEARITY, 2013, 26 (02) :479-494
[6]   Hitchhiker's guide to the fractional Sobolev spaces [J].
Di Nezza, Eleonora ;
Palatucci, Giampiero ;
Valdinoci, Enrico .
BULLETIN DES SCIENCES MATHEMATIQUES, 2012, 136 (05) :521-573
[7]   Positive solutions of the nonlinear Schrodinger equation with the fractional Laplacian [J].
Felmer, Patricio ;
Quaas, Alexander ;
Tan, Jinggang .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2012, 142 (06) :1237-1262
[8]   Multiple solutions of nonlinear Schrodinger equation with the fractional Laplacian [J].
Ge, Bin .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2016, 30 :236-247
[9]   Solutions of nonlinear Schrodinger equation with fractional Laplacian without the Ambrosetti-Rabinowitz condition [J].
Gou, Tian-Xiang ;
Sun, Hong-Rui .
APPLIED MATHEMATICS AND COMPUTATION, 2015, 257 :409-416
[10]   Fractional Gagliardo-Nirenberg and Hardy inequalities under Lorentz norms [J].
Hajaiej, Hichem ;
Yu, Xinwei ;
Zhai, Zhichun .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 396 (02) :569-577